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Airport Extraction via Complementary Saliency
Analysis and Saliency-Oriented

Active Contour Model
Qijian Zhang, Libao Zhang , Member, IEEE, Wenqi Shi, and Yue Liu

Abstract— Automatic airport extraction in remote sensing
images (RSIs) has been widely applied in military and civil
applications. An efficient airport extraction framework for RSIs
is constructed in this letter. In the first step, we put for-
ward a two-way complementary saliency analysis (CSA) scheme
that combines vision-oriented saliency and knowledge-oriented
saliency for the airport position estimation. In the second step,
we construct a saliency-oriented active contour model (SOACM)
for airport contour tracking, where a saliency orientation term is
incorporated into the level-set-based energy functions. Under the
guidance of saliency feature representations obtained by CSA,
the SOACM can acquire well-defined and highly precise object
contours. Experimental results demonstrate that the proposed
extraction framework shows good adaptability in remote sensing
scenes, and uniformly achieves high detection rate and low false
alarm rate. Compared with three state-of-the-art algorithms, our
proposal can not only estimate the location of airport targets, but
also extract detailed information of the airport contours.

Index Terms— Active contour model (ACM), airport extrac-
tion, object detection, remote sensing, saliency analysis.

I. INTRODUCTION

W ITH the remote sensing technology highly developed,
automatically recognizing the airport targets in remote

sensing images (RSIs) has become one of the most important
but challenging computer vision problems. In reality, it is
applied to airport navigation, military reconnaissance, and
many other practical applications.

To the best of our knowledge, previous studies on this issue
can be divided into two categories: unsupervised works that
are based on airport feature modeling and works that introduce
the supervised learning mechanism into the detection problem.
The first scheme basically puts emphasis on the artificially
designed representations of the airport geometrical character-
istics, and the regions of interest (ROIs) can be recognized in
terms of line segment detection [1], or saliency features that
combine texture information [2], [3]. Since the first class uses
primary properties of the airports, it can achieve fast detection
with relatively good recognition results. However, as the best
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discriminative feature representations for the airport targets are
difficult to predict and artificially construct, this method can
be sensitive to complex background noises and the existence
of irrelevant linear objects. On the contrary, in the second
class, the supervision mechanism and machine learning are
incorporated into the detection framework. In most cases,
this method identifies the targets by means of an appropriate
feature classifier, such as support vector machine (SVM) [4],
and Adaboost algorithm [5]. In [6], the airport is described by
a set of scale invariant feature transform keypoints and then
selected from candidate regions by SVM.

In recent years, a lot of studies have been conducted from
the perspective of image saliency analysis [7], where a variety
of saliency cues are employed to take the place of traditional
airport feature descriptions. In [8], the top-down and bottom-
up saliency maps are combined to separate the candidate
regions. Then, the airport ROI is determined with a pretrained
SVM. Besides, the deep learning theory also receives more and
more attention in image processing applications. For example,
in [9] and [10], the convolutional neural network (CNN) is
utilized to extract high-level features and hierarchical rep-
resentations of the objects. With a well-designed learning
network and training set, the CNN-based method uniformly
presents highly robust detection results. In general, supervised
detection algorithms achieve better recognition rate than do
unsupervised methods. But it needs a large quantity of image
samples that are precisely marked by the researchers, which
makes it task-dependent and causes low model reusability.
The process of pattern matching and sample training can be
quite time consuming, and largely determines the quality of
the whole detection framework.

In an image, the salient areas will catch human being’s
visual attention with low-level properties such as lumi-
nance, color, and contrast distribution. This vision-oriented
saliency (VOS) indiscriminately extracts the eye-catching
areas. For another, an observer can distinguish the airport
targets by inherent prior cognition. This knowledge-oriented
saliency (KOS) selectively focuses on the regions that contain
more line segments, but fails to separate the airport runways
from other disturbing linear objects such as the residential
areas, long rivers, and highway.

Inspired by the two types of visual saliency mechanisms,
this letter presents a complementary saliency analysis (CSA)
model. The VOS connects contrast distribution with spatial
relation of image subregions. The KOS considers the airport
target as a cluster of organized lines and generates a quality-
weighted line density map. To gain the information of airport
contours, we incorporate fusion saliency representations into
the framework of traditional active contour model (ACM), and
formulate an innovative saliency-oriented ACM (SOACM).
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Fig. 1. Flowchart of the proposed airport extraction method.

In our implementation, a saliency orientation term (SOT) is
added to the level-set-based energy functions, so that the object
contour keeps evolving in the right direction and converges
faster to the airport runways.

In conclusion, the contributions of this letter mainly lie in
the following two aspects.

1) We put forward a CSA scheme that can accurately
estimate the spatial location of the airport in remote
sensing scenes.

2) We present an innovative SOACM for airport contour
tracking. Compared with existing ACMs, the proposed
SOACM significantly improves the evolving speed and
succeeds in extracting airport contours that highly con-
form to the actual objects.

II. MODEL CONSTRUCTION

The proposed detection framework starts by segmenting
the input RSI into a series of superpixels. In the first step,
the VOS generates a bottom-up saliency map in terms of the
interactions of interior contrast and spatial location among
the superpixels. In the second step, the KOS detects the line
segments and draws a top-down saliency map in terms of line
density distribution. Finally, the proposed SOACM exploits the
saliency feature representations to guide the process of energy
minimizing, and acquires the airport contours within a small
localized operating window. The flowchart of our method is
shown in Fig. 1.

A. Superpixel Segmentation

Superpixel segmentation usually acts as a preprocessing
step to reduce the complexity of subsequent image processing
tasks. It decomposes the image into homogeneous subre-
gions with well-preserved boundaries, aiming to simplify the
image details and highlight structural information. In this
letter, an efficient algorithm, simple linear iterative cluster-
ing (SLIC) [11], is introduced to acquire superpixels from
RSIs. The SLIC method can generate regular and compact
superpixels, with adjustable number of clusters. Compared
with pixel-wise saliency models, the superpixel-based scheme
can present more concise image information and is more
robust to remote sensing noises.

Mathematical morphological filter is a useful tool for image
noise suppression. Since superpixel segmentation is typically
used for natural image processing, the quality of segmentation

can be degraded in complex RSIs with large quantity of colors
and uneven luminance distribution. To solve this, we utilize
a morphology closing operator, where the image area will
be first dilated and then be eroded, to strengthen the line
segments of airport runways and remove small, isolated image
fragments.

B. Complementary Saliency Analysis (CSA)

Human vision systems extract salient objects from complex
background without effort. However, automatically detecting
the salient region from images is still a challenging problem.
In this section, we construct a two-way CSA model that is
operated on superpixels. In the VOS layer, low-level saliency
cues of contrast distribution and spatial relation are taken
into account to acquire visually prominent candidate regions.
In the KOS layer, we describe the airport target in terms of
regional line density and length quality. The VOS and KOS are
designed to be complementary, inter-reinforced, and highlight
the airport ROI from different and independent aspects.

Note that in this letter, saliency is used particularly to guide
the curve evolution of ACM and enhance the quality of airport
contour tracking, not to directly extract the airport targets.
Therefore, it would be acceptable if the CSA fails to acquire
the complete ROI, as long as the fusion saliency mask does
fall on part of the actual airport fields. And this enables us to
impose stricter target matching criteria. Generally, the fusion
saliency is given by

Sal(rk) = VOS(rk) · KOS(rk) (1)

where VOS(rk) and KOS(rk) mean the vision and knowledge
layer saliency of the superpixel rk .

C. VOS With Low-Level Saliency Cues

The VOS layer implements the assumption that the salient
region distinguishes itself by higher contrast with other parts
of the image. We also notice that the distance between two
regions can largely determine to what extent one makes
contrast with another. Thus, we naturally obtain the following
statements.

1) Higher contrast is indicative of higher saliency.
2) Contributions that contrast make to saliency declines as

the distance between two regions increases.
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Fig. 2. Diagram of formulating the connection term in a coordinate system
and its 3-D visual form.

Based on the knowledge above, the contrast-based saliency
for superpixel rk can be formulated as follows:

CT(rk) =
∑

ri �=rk

Dc(ri , rk) · ηi,k (2)

where Dc(ri , rk) = ‖c(ri ), c(rk)‖ denotes mean color dis-
tances in L × a × b color space between superpixel ri and rk .
ηi,k is a connection term that reflects the influence of area
distances.

Specifically, let λ = Dc(ri , rk) be the color differences and
μ = ‖center(ri ), center(rk)‖ be the region distance between
ri and rk . Suppose that we apply the λ and μ in a coordinate
system, with each normalized to [0, 1]. As shown in Fig. 2, any
two regions can be mapped to a point Pi,k within the colored
area. The connection term is expected to reach its maximum
at point C and decreases while approaching point A and B.
To achieve this, we formulate ηi,k = ηi,k (λ, μ) as follows:

ηi,k = √
L1/L2 (3)

where L1 and L2 represent the geometrical distances as

L1 = |Pi,k A|+|Pi,k B| =
√
λ2 + μ2 +

√
λ2+(μ− 1)2 (4)

L2 = |Pi,kC | =
√
(λ− 1)2 + μ2. (5)

Under ideal circumstances where the object is segmented as
a whole, we can get the ROI labeled equally salient. However,
in most cases, the airport area is cut into pieces and consists of
a cluster of adjacent superpixels. These superpixels may inhibit
each other, causing uneven saliency distribution. Therefore,
it is necessary to introduce a compensation operator so that
the airport area can be uniformly highlighted.

Let V = {v1, v2, . . . , vm} be a set of neighboring super-
pixels of rk . We acquire the VOS with a local smoothing
scheme as

VOS(rk) = 1

m + 1
·
[

CT(rk)+
m∑

i=1

CT(vi )

]
. (6)

After that, we can acquire a series of candidate ROIs, from
which the target area can be further distinguished by high-level
prior knowledge of the airport objects.

D. KOS With High-Level Geometrical Priors

The KOS layer puts emphasis on geometrical characteristics
of airport runways. It is observed that the airport area consists
of a series of densely aggregated line segments. Although
there inevitably exist many other disturbing linear objects,
the airport area will distinguish itself with significantly larger
line density.

Thus, the KOS of each superpixel can be measured on the
basis of the following understanding.

Fig. 3. Line segment connection. (a) Original image. (b) LSD results.
(c) Connection results.

1) A superpixel should be labeled more salient if it contains
more line elements.

2) The line segments with higher quality should be given
greater weight. In this letter, we naturally interpret the
line quality as its length.

Line segment detector (LSD) [12] is an efficient linear-
time model that outperforms existing line detection algorithms.
Inspired by [7], the KOS layer first employs the LSD to
extract line segments and generate the line density map. For
superpixel rk , we define the length-weighted line density as

LD(rk) = NL (rk)

N(rk )
· QL(rk) (7)

where N(rk ) is the number of pixels contained in region rk
and NL (rk) counts the pixels on the line segments detected by
LSD. Since the line segments that make up the airport runways
are supposed to be long enough, we introduce an emphasis
factor to represent the line quality. Obviously, superpixels that
contain short and zigzag disturbing lines can be suppressed.

Let L(k) = {l1, l2, . . . , l p} be a set of lines incorporated
into rk . Then, the emphasis factor QL(rk) is given by

QL(rk) =
p∑

i=1

Length(li ). (8)

Based on the length-weighted line density map, we formu-
late the KOS with a Gaussian form, so that the high-density
areas can highly stand out (σ 2 = 0.4)

KOS(rk) = exp

{
LD(rk)

σ 2

}
. (9)

In practice, the line segments of airport runways detected by
LSD are always discontinuous, which makes it hard to separate
them from other noise lines for being too short. To get better
use of the line quality factor and distinguish the airport from
other high-density regions, an effective line connection process
is needed. Here, we employ a simple connection scheme stated
in [8] to enhance the quality of line extraction. An example
of this procedure is illustrated in Fig. 3.

E. Saliency-Oriented Active Contour Model (SOACM)

In computer vision field, ACM is extensively used for
contour tracking and image segmentation. This approach
describes the object contour as an evolving curve embedded
in artificially designed energy functions, and pulls it toward
the object edges by energy minimizing.

Compared with other detection frameworks, the conspic-
uous superiority of ours lies in that we combine saliency
features with ACM and make further efforts in contour extrac-
tion. To illustrate the need for applying saliency orientation in
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Fig. 4. Comparisons of the ACMs directly applied to the RSI. The first row
visualizes the labeling curve. The second row shows the binary mask. Results
obtained by (a) GVF [13], (b) C–V [14], (c) LBF [15], and (d) DRLSE [16].

Fig. 5. Process of constructing the LEW and saliency-guided initialization
of the proposed SOACM. (a) Original image. (b) Local evolving window.
(c) Initial object contour.

ACM, an experiment is conducted using four popular ACMs.
As shown in Fig. 4, in remote sensing scenes, the quality
of contour recognition can be greatly degraded if the models
are directly applied. Some of the algorithms become time
consuming when the image size significantly increases.

Inspired by the C–V model [14], this letter innovatively puts
forward an SOACM with better adaptability to RSIs. First,
we construct a smaller local evolving window (LEW) that
centers the saliency mask, in which the energy evolution is
carried out. This helps to ignore redundant image context and
guarantees high running speed. Considering that the evolving
curve may move very slowly if the initialization is far from
the airport area, we have the fusion saliency mask serve as the
initial object contour. This avoids false alarm to a large extent.
The process of constructing the LEW and model initialization
is described in Fig. 5.

Mathematically, for a given image U : � ⊂ �3 → �, and
the corresponding 2-D gray scale image I , the level-set-based
SOACM is formulated as

ESOACM(c1, c2, ψ) = λ1

∫
�
(I − c1)

2 Hε(ψ)dσ

+ λ2

∫
�
(I − c2)

2[1 − Hε(ψ)]dσ

+ α
∫
�
δε(ψ)|∇ψ |dσ + Eort(c1) (10)

where ψ means the level set function. c1 and c2 denote average
intensities inside and outside target contour. Hε and δε are
regularized Heaviside and Dirac function. λ1 and λ2 are set to
1 and α is set to 0.2.

However, to identify the target from the whole image
context with two average values can be unreliable in

Fig. 6. Saliency maps and results of airport extraction obtained by the
proposed CSA and SOACM.

complex RSIs. In most cases, there should exist more than one
visually prominent foregrounds that C–V fails to make further
selections. Thus, the airport will be mixed up with foreground
redundancies. In order to refine and pinpoint airport ROI,
we supplement an SOT Eort in the energy formulation as

Eort(c1) = λ3

∫
�
(U − CVort)

2 Hε(ψ)dσ (11)

where λ3 is set to 1. CVort is a predetermined prior feature
vector, referring to the mean color value of all pixels covered
by the obtained saliency mask. The SOT would decrease if
more pixels with similar colors to the airport ROI are incor-
porated, and increase as the curve moves toward those with
different colors, not just the background elements. In practice,
we minimize the level-set energy functional with the Euler–
Lagrange equation as

∂ψ

∂ t
= δε

[
αdiv

( ∇ψ
|∇ψ |

)
− λ1(I − c1)

2

+ λ2(I − c2)
2 − λ3(U − CVort)

2
]
. (12)

On the basis of reliable saliency priors obtained by CSA,
the evolving curve will be guided to approach the target. In the
end, we remove all small fragments of image islets.

III. EXPERIMENTAL RESULTS

An experiment is performed to evaluate our framework.
We utilize 276 RSIs gathered from Google earth with the
resolution ranging from 20 to 40 m. The size of images is
600 × 600 pixels. The ground truth is manually labeled to
finely depict the airport structures and details.

Fig. 6 presents saliency maps and detection results obtained
by CSA and SOACM. As it shows, the saliency model
succeeds in providing a rough but reliable estimation of the
airport’s space location. The SOACM adapts well to RSIs
and generates complete, detailed, and highly accurate airport
contours. The proposed framework is evaluated by detection
rate (DR), false alarm rate (FAR), mean absolute error (MAE),
and running time. In practice, if the extracted area contains
more than 50% of the ground truth, we consider it as a
successful detection. Besides, MAE is defined to measure
average pixel differences between the detection results and
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TABLE I

PERFORMANCES OF DIFFERENT AIRPORT DETECTION MODELS

Fig. 7. MAE of the extracted airport contours using different methods.

ground truth as

MAE = 1

W × H

W∑
x=1

H∑
y=1

|R(x, y)− GT (x, y)| (13)

where W and H denote the image width and height, R(x, y) is
the pixel value, and GT (x, y) is the ground truth.

We compare our model with three different types of meth-
ods: one that uses saliency analysis [2], a line detection-based
method that combines Fisher vector coding and SVM [4], and
one that applies the idea of machine learning [7]. The test data
are given in Table I.

As it shows, our proposal achieves higher DR and lower
FAR than do works [2] and [4]. Compared with [7], we achieve
comparable accuracy and reliability, and our algorithm is much
faster and omits the time-consuming work of sample marking
and model training. Moreover, although the DR is slightly
lower than that in [7], our proposal shows much better MAE,
which means that we are able to provide a more precise and
detailed description of the airport contours.

In Fig. 7, performances on MAE that change as the iteration
times increase are investigated using the C–V and SOACM.
Moreover, a scheme without the SOT is tested. We can see that
the original C–V shows increasing MAE for it incorporates
too much noise elements into the evolving contour. Instead,
the curve of the scheme without SOT keeps decreasing, starts
at a lower level of MAE, and moves faster. Because the
initial object contour is determined by the saliency mask,
and the energy evolution is operated within the LEW, which
is much smaller compared with the input RSI. By contrast,

the SOACM achieves the lowest MAE with the minimum
number of iterations, for the reason that the evolving curve
is guided by the SOT to approach the airport area.

IV. CONCLUSION

This letter focuses on airport extraction in RSIs. A two-way
CSA model is proposed to estimate airport ROI by combining
low-level VOS and high-level KOS cues. Based on the fusion
saliency map, we present a novel SOACM to acquire the
airport contours. Considering that conventional ACMs are less
reliable in RSIs with faint contrast and ill-defined boundaries,
we construct an SOT to guide the evolution of energy functions
with saliency feature representations. We compare our model
with three state-of-the-art methods in terms of DR, FAR, and
MAE measure. Experimental results prove that our model can
not only achieve high detection accuracy and efficiency, but
also extract contours that highly conform to the actual objects.
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