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ABSTRACT 

 

This paper deals with automatic airport extraction in remote 

sensing images (RSIs). We present an innovative framework 

using sparse reconstruction saliency (SRS) and target-aware 

active contour model (TAACM). We begin with segmenting 

an image into superpixels and extracting the feature vectors. 

In feature space, we learn an airport target dictionary and a 

background dictionary for sparse representation of all image 

sub-regions. The saliency confidence can be determined by 

sparse reconstruction error. Based on the saliency map, we 

apply a novel target-aware active contour model (TAACM) 

for target contour tracking and provide accurate descriptions 

about the airport details. Extensive experiments demonstrate 

that the SRS algorithm outperforms nine competing saliency 

models in remote sensing scenes. In addition, the proposed 

airport extraction framework achieves higher detection 

accuracy compared with three competing methods. 

 

Index Terms —Object extraction, saliency, dictionary 

learning, sparse coding, active contour model  

 

1. INTRODUCTION 

 

Automatic airport extraction in RSIs is receiving great 

attention in military and civil applications. To the best of 

our knowledge, traditional works can be classified into two 

categories: works based on edge or line segment detection 

[1, 2], and works based on scene segmentation [3]-[9]. 

Based on the observation that airport region of interest 

(ROI) consists of long, straight runways with continuous 

edges, the first category detects line segments [1] from the 

whole image and identify target area by means of a classifier 

such as support vector machine (SVM) [2]. This scheme 

achieves simple and fast detection, but is very sensitive to 

disturbing linear ground objects (e.g. residential areas, long 

rivers, and roads) in wide-range RSIs. In contrary, scene 

segmentation based methods utilize texture information [3] 

to obtain candidate sub-regions, from which the airport ROI 

is refined. In method [4] and [5], bottom-up and top-down 

saliency cues are combined to generate fusion saliency map, 

providing more efficient estimation of the airport fields. 

This scheme considers more contextual information and 
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achieves better robustness and accuracy, but it becomes 

time-consuming as the data volume significantly increases.  

Since the most discriminative feature representations of 

the airport targets are difficult to artificially predict and 

construct, deep learning based architecture [10, 11] received 

more and more attention recently. With adequate training 

samples and a well-designed network, deep learning method 

is able to excavate implicit target properties and is robust to 

very complicated image context. However, since there is no 

existing large open dataset targeted at airport in RSIs, the 

ability of deep learning model is often restricted by limited 

amount of training samples. In [11], the line group weighted 

saliency map is generated first, then deep residual learning 

network (ResNet) is employed to determine the airport from 

candidate regions. Although the ResNet serves as a better 

classifier, the overall effect of this work still highly relies on 

the saliency detection procedure. 

Conclusively, many valuable researches on the topic of 

airport detection have been conducted. But we noticed some 

shortcomings of traditional works that are worth enhancing. 

First, many saliency-based detection methods employ the 

saliency models targeted at natural scene image, which is 

not fully suitable for RSIs. Second, most of existing airport 

detection frameworks only focus on enhancing the detection 

rate, failing to further extract detailed information of airport 

contours and structures.  

To address the problems above, this paper presents a 

novel airport extraction framework via sparse reconstruction 

saliency (SRS) model and target-aware active contour 

model (TAACM). In the first step, the remote sensing image 

is segmented into superpixels. Each superpixel is 

represented by a feature vector in terms of color, contrast, 

and gradient magnitude metrics. The target dictionary and 

background dictionary are learned from the feature matrix 

respectively for the sparse representation of all image 

sub-regions. In the second step, we compute the sparse 

coding coefficients for each region and assign saliency 

confidence by the sparse reconstruction error. The saliency 

map is supposed to roughly locate the airport field and 

suppress background noises. Finally, we introduce saliency 

priors into the traditional energy function of active contour 

model and construct a novel target-aware active contour 

model (TAACM) for target contour tracking. By energy 

minimization, the contour curves can be pulled towards the 

airport so that we can separate highly-accurate airport 

structures from candidate ROIs. 
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Fig. 1. Flowchart of the proposed airport extraction framework. 

 

2. METHODOLOGY 

 

As illustrated in Fig. 1, we start by segmenting the whole 

image context into superpixels by SLIC algorithm [12], a 

widely applied method that generates regular and concise 

superpixels with well-preserved boundaries. Note that in our 

implementation, a bilateral filter is employed to pre-process 

the input RSI. This method helps to suppress low-frequency 

noises and preserve edge elements, avoiding degrading the 

airport runways structures.  

We design a set of feature selection metrics to 

represent the superpixel with a high-dimension feature 

vector. In the feature space, pre-learned target dictionary 

and background dictionary are utilized to compute the 

sparse representation coefficients for all image sub-regions. 

By measuring the target sparse reconstruction error (T-SRE) 

and background sparse reconstruction error (B-SRE), we 

can assign saliency confidence to each superpixel and 

generate saliency map to estimate the airport location. 

Finally, we employ the proposed TAACM to acquire the 

airport contours where saliency priors are introduced to 

guide the evolving curves to move towards the airport 

target.  

 

2.1. Target and Background Dictionary Learning 

 

In the dictionary learning stage, we build up the target and 

background training set respectively by collecting airport 

and background RSI patches. In order to efficiently express 

and distinguish the characteristics of different types of the 

patches, we design a feature representation pattern to extract 

the feature vector from the superpixel.  

Suppose that we obtain N superpixels from the input as 

 1 2, ,..., Ns s s  . For superpixel is , we integrate color 

feature, global contrast feature, and gradient magnitude 

feature to construct the feature vector ix  as 

  , ,lab c m

ix c     (1) 

where  , ,lab l a bc c c c  denotes the mean color feature 

vector of is  in CIELAB color space. 
c  measures the 

global contrast level. We collect the color information of all 

pixels in is  and construct the color histogram. Then we 

quantize each color channel into 12 discrete values as a 36-d 

feature vector 
ih . Let 

i  be the total number of pixels in 

is , the 
c  can be formulated as  

 
2

( ) ,
k

c

i i i k

s

s h h 


   (2) 

Moreover, 
m  denotes the mean gradient magnitude 

obtained by Gabor filtering. Conclusively, the formulation 

of 
ix  implements the observation that the airport area has 

relatively uniform and distinct color distribution, higher 

contrast to the whole image context, and strong gradient 

magnitude. Thus, the superpixel set can be represented as 

feature matrix  1 2, ,...,f

Nx x x  .  

After that, we employ an efficient dictionary learning 

algorithm, online dictionary learning (ODL) presented in 

work [13], to learn the target dictionary tD and background 

dictionary bD from the corresponding training set. And the 

pre-trained dictionaries are supposed to provide appropriate 

bases for effective sparse coding of the airport ROI and the 

remote sensing background. 

 

2.2. Sparse Reconstruction Saliency (SRS) 

 

Sparse representation aims to describe the original signal 

with the least amount of basis atoms under a given 

over-complete dictionary. Inspired by the algorithm in [14] 

that determines saliency via boundary template based sparse 

reconstruction error (SRE), this paper simultaneously 

computes the T-SRE and B-SRE with respect to the given 

target and background dictionary, and generates saliency 

map by the two metrics. 

We notice that the target superpixels should be better 

expressed by the target dictionary with less reconstruction 

error than that with the background dictionary. Similarly, 
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the background objects can be reconstructed by the 

background dictionary more accurately. Hence, salient 

superpixels will correspond to lower T-SRE and higher 

B-SRE.  

Based on the knowledge above, we first acquire the 

target and background sparse representation coefficients, 
t

i  and b

i , for the 
thi  superpixel as 

 
/

2
/ / / /

2 1
arg min

t b
i

t b t b t b t b

i i i ix D


        (3) 

where we set 0.15   to control the sparsity. Note that 
/t b

i  encodes superpixel 
ix  with the target/background 

dictionary. After that, we compute the SRE by 

 
2

/ / /

2

t b t b t b

i i ix D     (4) 

where t

i  and b

i  denote the T-SRE and B-SRE. Since 

we interpret high saliency as a combination of low T-SRE 

and high B-SRE, the superpixel-wise saliency map is 

defined as 

 
1

( ) t b b

i it

i

Sal s   


      (5) 

where we set weighting parameter 1t   and 2b  . And 

the 
t

i  and 
b

i  are normalized to [0,1] in advance. Thus, 

we are able to estimate the location of airport ROI in the 

whole image according to the saliency map. After that, we 

employ the Otsu algorithm [15] that provides adaptive 

threshold to obtain a binary saliency mask 
sM . 

 

2.3. Target-aware Active Contour Model (TAACM) 

 

In computer vision field, active contour model (ACM) has 

been extensively applied in medical and natural scene image 

segmentation. This approach describes the object contour as 

an evolving curve embedded in the artificially-designed 

energy functions, and pulls it towards the object edges by 

energy minimizing [16]. However, traditional ACMs are not 

fully practical in complex remote sensing scenes for being 

quite time-consuming in large-size RSIs. In addition, 

existing schemes can only separate visually prominent 

foregrounds from wide-range background, but often fail to 

further refine the target area from other redundant 

foreground objects. Illustrations of this problem are 

presented in Fig. 2.  

Actually, we cannot distinguish the task-required target 

area with foreground redundancies with a totally data-driven 

formulation of the active contour model. Therefore, in this 

paper, we introduce saliency priors obtained by the SRS 

model into the original formulation of classic C-V model, as 

cited in [17], and put forward a novel target-aware active 

contour model (TAACM). 

In the first stage, saliency priors obtained by SRS 

model are used to estimate the characteristics of airport area. 

For all pixel points  1 2, ,..., mp p p  covered by the 

saliency mask 
sM , we obtain the airport feature vector by 

 
1

, , ,l a b m

s

p p p p

p p p p
m


   

 
  

 
      (6) 

where 
/ / /l a b mp  denote the L*a*b color values and gradient 

magnitude of a particular pixel. Obviously, this 4-d vector 

acts as an estimation of the airport features. 

 
(a)               (b)                (c) 

Fig. 2. Unsuccessful segmentation using C-V [17] model 

where the airport is mixed up with foreground redundancies. 

(a) Input RSI, (b) and (c) Segmentation Result. 

For an image 3:U   , and the corresponding 

luminance channel I, the TAACM consists of three items  

 TAACM d c tE E E E     (7) 

In formula (7), dE  denotes luminance differences 

between inside and outside the evolving contour. cE  

controls curve smoothness. And tE  depicts the differences 

between areas estimated by saliency and areas incorporated 

in the contour curves. Specific expressions are given as  

 2 2

1 2( ) ( ) ( ) 1 ( )dE I c H d I c H d    
 

       (8) 

 0.3 ( )cE d   


     (9) 

 2

2
, ( )t

c sE H d   


    (10) 

where   denotes level set function. 1c  and 2c  denote 

average intensities inside and outside the evolving contour. 

H
 and 

  are regularized Heaviside and Dirac function. 

And c  is the feature descriptor of the regions inside the 

contour curves. In practice, we minimize the level set 

energy functional with the Euler-Lagrange equation as 

22 2

1 2 2
0.3 ( ) ( ) ( ) ,c sdiv I c I c

t


 
  



  
      

  

 

(11) 
In the end, we present an acceleration scheme for a fast 

TAACM. On the one hand, we construct a local evolving 

window that centers the saliency mask where the energy 

evolution process is carried out. Since the adaptive window 

is typically much smaller, it will ignore most redundant 

information and largely enhance the speed of TAACM. On 
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(a)     (b)      (c)     (d)      (e)     (f)      (g) 

Fig. 3. Visual comparison of saliency maps with (a) Input, 

(b) FT, (c) CA, (d) PISA, (e) MR, (f) RC, and (g) SRS. 

the other hand, considering that the evolving curve may 

move very slowly if the initialization is far from the airport, 

the saliency mask will serve as the initial object contour. 

 
Fig. 4. ROC curves of different saliency models. 

 

3. EXPERIMENT 

 

We conducted an experiment to evaluate our proposal, using 

230 images downloaded from Google Earth with 600×600 

pixels. Another 42 samples are organized for the dictionary 

learning. The ground truth is manually labeled to finely 

depict structures instead of roughly covering boxes. All the 

competing models are run on MATLAB  R2017b. 

In the first stage, we compare the proposed SRS model 

with other nine state-of-the-art methods: GBVS [18], SUN 

[19], FT [20], CA [21], PISA [22], MR [23], GC [24], HC 

[25], and RC [25]. Due to space limitations, we only select 

five models for visual comparisons in Fig. 3. As it suggests, 

the SRS model not only highlights the airport ROI, but also 

largely suppresses the background. In Fig. 4, all competing 

saliency methods are evaluated by ROC curves, from which 

we can see that proposed SRS model fits the ground truth 

well for being close to the upper-left. 

Besides, Fig. 5 illustrates the improvement of TAACM 

that significantly excludes redundant areas and refines the 

structures of airport target. 

 
        (a)                (b)               (c) 

Fig. 5. Successful segmentation using proposed TAACM 

where the airport is refined from foreground redundancies. 

(a) Input RSI, (b) and (c) Segmentation Result. 

In the end, we compare our proposal with work [2], [4], 

and [6] in terms of detection rate (DR), false alarm rate 

(FAR), and average running time. If the labeled area covers 

more than 50% of the ground truth, we consider it as a 

successful detection. Test data are given in Table 1. 

Table 1. Comparisons with Competing Methods 

Methods DR FAR Time (s) 

LF [2] 88.9% 18.9% 8.64 

SM [4] 81.5% 25.2% 5.22 

HRLS [6] 92.4% 14.6% 17.50 

Ours 90.9% 10.5% 5.95 

The LF [2] adopts an efficient feature representation 

based on Fisher vector to analyze line feature of runways 

and achieves relatively good efficiency. SM [4] uses an 

improved GBVS model for saliency detection and Hough 

transform for line detection. It is the fastest method, but is 

sensitive to non-airport line segments. HRLS [6] applies an 

iterative scheme to reinforce the image level by level, and 

achieves highest DR and low FAR. But the computational 

complexity largely increases due to the iteration process. 

Comparatively, we achieve high DR and the lowest 

FAR. Since the dictionary is learned in advance and the 

TAACM is carried out within a local window, our proposal 

achieves very fast detection. Another major superiority of 

the ACM-based detection scheme lies in that it provides 

more detailed information of airport contours and structures. 

 

4. CONCLUSION 

 

An efficient airport extraction method is presented in 

this paper. First, we learn target and background dictionary 

in feature space. Second, a new sparse reconstruction 

saliency (SRS) model is proposed to detect salient regions in 

terms of sparse reconstruction error. Finally, we incorporate 

saliency priors and build up a novel target-aware active 

contour model (TAACM) that is more reliable in remote 

sensing scenes. Experiments indicate that the SRS model 

outperforms nine competing saliency algorithms in remote 

sensing scenes. And the airport extraction framework is 

faster and achieves higher detection accuracy and efficiency 

compared with other three detection methods. 
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