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Abstract The inherent ambiguity in ground-truth annota-
tions of 3D bounding boxes, caused by occlusions, signal
missing, or manual annotation errors, can confuse deep 3D
object detectors during training, thus deteriorating detection
accuracy. However, existing methods overlook such issues to
some extent and treat the labels as deterministic. In this paper,
we formulate the label uncertainty problem as the diversity
of potentially plausible bounding boxes of objects. Then, we
propose GLENet, a generative framework adapted from con-
ditional variational autoencoders, to model the one-to-many
relationship between a typical 3D object and its potential
ground-truth bounding boxes with latent variables. The label
uncertainty generated by GLENet is a plug-and-play module
and can be conveniently integrated into existing deep 3D
detectors to build probabilistic detectors and supervise the
learning of the localization uncertainty. Besides, we propose
an uncertainty-aware quality estimator architecture in prob-
abilistic detectors to guide the training of the IoU-branch
with predicted localization uncertainty. We incorporate the
proposed methods into various popular base 3D detectors
and demonstrate significant and consistent performance gains
on both KITTI and Waymo benchmark datasets. Especially,
the proposed GLENet-VR outperforms all published LiDAR-
based approaches by a large margin and achieves the top
rank among single-modal methods on the challenging KITTI
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1 Introduction

As one of the most practical application scenarios of computer
vision, 3D object detection has been attracting much academic
and industrial attention in the current deep learning era with
the rise of autonomous driving and the emergence of large-
scale annotated datasets (e.g., KITTI (Geiger et al., 2012),
and Waymo (Sun et al., 2020)).

In the current community, despite the proliferation of vari-
ous deep learning-based 3D detection pipelines, it is observed
that mainstream 3D object detectors are typically designed as
deterministic models, without considering the critical issue
of the ambiguity of annotated ground-truth labels. However,
different aspects of ambiguity/inaccuracy inevitably exist in
the ground-truth annotations of object-level bounding boxes,
which may significantly influence the overall learning process
of such deterministic detectors. For example, in the data
collection phase, raw point clouds can be highly incomplete
due to the intrinsic properties of LiDAR sensors as well as un-
controllable environmental occlusion. Moreover, in the data
labeling phase, ambiguity naturally occurs when different
human annotators subjectively estimate object shapes and
locations from 2D images and partial 3D points. To facili-
tate intuitive understandings, we provide typical examples in
Fig. 1, from which we can observe that an incomplete LiDAR
observation can correspond to multiple potentially plausible
labels, and objects with similar LiDAR observation can be
annotated with significantly varying bounding boxes.

https://github.com/Eaphan/GLENet
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Fig. 1: (a) Given an object with an incomplete LiDAR observation, there may exist multiple potentially plausible ground-truth
bounding boxes with varying sizes and shapes. (b) Ambiguity and inaccuracy can be inevitable in the labeling process when
annotations are derived from 2D images and partial points. In the given cases, similar point clouds of the car category with
only the rear part can be annotated with different ground-truth boxes of varying lengths.

Fig. 2: Illustration of two different learning paradigms of probabilistic object detectors. (a) Methods that adopt probabilistic
modeling in the detection head but essentially still ignore the issue of ambiguity in ground-truth bounding boxes. (b) Methods
that explicitly estimate ground-truth bounding box distributions to be used as more reliable supervision signals.

Motivated by the aforementioned phenomena, there also
exists another family of probabilistic detectors that explicitly
consider the potential influence of label ambiguity. Conclu-
sively, these methods can be categorized into two paradigms,
as illustrated in Fig. 2. The first paradigm of learning frame-
works (He et al., 2019; Meyer et al., 2019; Feng et al.,
2018, 2019) tends to output the probabilistic distribution of
bounding boxes instead of directly regressing definite box
coordinates in a deterministic fashion. For example, under the
pre-assumption of a Gaussian distribution, the detection head
predicts the mean and variance of the distribution accord-
ingly. To supervise such probabilistic models, these works
simply treat ground-truth bounding boxes as the Dirac delta
distribution, after which KL divergence is applied between
the estimated distributions and ground truths. Obviously, the
major limitation of these methods lies in that they fail to
essentially address the problem of label ambiguity, since the
ground-truth bounding boxes are still considered determin-
istic with zero uncertainty (i.e., modeled as a Dirac delta

function). To this end, the second paradigm of learning frame-
works attempts to quantify label uncertainty derived from
some simple heuristics (Meyer and Thakurdesai (2020)) or
Bayes (Wang et al. (2020)), such that the detectors can be
supervised under a more reliable bounding box distribution.
However, it is unsurprising that these approaches still cannot
produce satisfactory label uncertainty estimation results due
to insufficient modeling capacity. In general, this line of work
is still in its initial stage with a very limited number of studies,
despite its greater potential in generating higher-quality label
uncertainty estimation in a data-driven manner.

Architecturally, this work follows the second type of de-
sign philosophy, where we particularly customize a powerful
deep learning-based label uncertainty quantification frame-
work to enhance the reliability of the estimated ground-truth
bounding box distributions. Technically, we formulate the
label uncertainty problem as the diversity of potentially plau-
sible bounding boxes and explicitly model the one-to-many
relationship between a typical 3D object and its potentially
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Fig. 3: Illustration of multiple potentially plausible bounding boxes from GLENet on the KITTI dataset by sampling latent
variables multiple times. The point cloud, annotated ground-truth boxes, and predictions of GLENet are colored in black, red,
and green, respectively. GLENet produces diverse predictions for objects represented with sparse point clouds and incomplete
outlines, and consistent bounding boxes for objects with high-quality point clouds. The variance of the multiple predictions by
GLENet is used to estimate the uncertainty of the annotated ground-truth bounding boxes.

plausible ground-truth boxes in a learning-based framework.
We propose GLENet, a novel deep generative network adapted
from conditional variational auto-encoders (CVAE), which
introduces a latent variable to capture the distribution over
potentially plausible bounding boxes of point cloud objects.
During inference, we sample latent variables multiple times
to generate diverse bounding boxes (see Fig.3), the variance
of which is taken as label uncertainty to guide the learn-
ing of localization uncertainty estimation in the downstream
detection task. Besides, based on the observation that detec-
tion results with low localization uncertainty in probabilistic
detectors tend to have accurate actual localization quality
(see Section4.2), we further propose the uncertainty-aware
quality estimator (UAQE), which facilitates the training of
the IoU-branch with the localization uncertainty estimation.

To demonstrate our effectiveness and universality, we
integrate GLENet into several popular 3D object detection
frameworks to build powerful probabilistic detectors. Ex-
periments on KITTI (Geiger et al., 2012) and Waymo (Sun
et al., 2020) datasets demonstrate that our method can bring
consistent performance gains and achieve the current state-of-
the-art. Particularly, the proposed GLENet-VR surpasses all
published single-modal detection methods by a large margin
and ranks 1𝑠𝑡 among all published LiDAR-based approaches
on the highly competitive KITTI 3D detection benchmark on
March 29𝑡ℎ, 20221.

We summarize the main contributions of this paper as
follows:

1 www.cvlibs.net/datasets/kitti/eval object.php?obj benchmark=3d

– We are the first to formulate the 3D label uncertainty
problem as the diversity of potentially plausible bounding
boxes of objects. To capture the one-to-many relationship
between a typical 3D object and its potentially plausible
ground-truth bounding boxes, we present a deep genera-
tive model named GLENet. Additionally, we introduce
a general and unified deep learning-based paradigm, in-
cluding the network structure, loss function, evaluation
metric, etc.

– Inspired by the strong correlation between the localization
quality and the predicted uncertainty in probabilistic
detectors, we propose UAQE to facilitate the training of
the IoU-branch.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews existing works on LiDAR-based detectors
and label uncertainty estimation methods. In Section 3, we
explicitly formulate the label uncertainty estimation problem
from the probabilistic distribution perspective, followed by
the technical implementation of GLENet. In Section 4, we
introduce a unified way of integrating the label uncertainty
statistics predicted by GLENet into the existing 3D object
detection frameworks to build more powerful probabilistic
detectors, as well as some theoretical analysis. In Section 5,
we conduct experiments on the KITTI dataset and the Waymo
Open dataset to demonstrate the effectiveness of our method
in enhancing existing 3D detectors and the ablation study to
analyze the effect of different components. Finally, Section 7
concludes this paper.

www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
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2 Related Work

2.1 LiDAR-based 3D Object Detection

Existing 3D object detectors can be classified into two cate-
gories: single-stage and two-stage. For single-stage detectors,
Zhou and Tuzel (2018) proposed to convert raw point clouds
to regular volumetric representations and adopted voxel-based
feature encoding. Yan et al. (2018b) presented a more efficient
sparse convolution. Lang et al. (2019) converted point clouds
to sparse fake images using pillars. Shi and Rajkumar (2020a)
aggregated point information via a graph structure. He et al.
(2020) introduced point segmentation and center estimation
as auxiliary tasks in the training phase to enhance model ca-
pacity. Zheng et al. (2021a) constructed an SSFA module for
robust feature extraction and a multi-task head for confidence
rectification, and proposed DI-NMS for post-processing. For
two-stage detectors, Shi et al. (2020b) exploited a voxel-based
network to learn the additional spatial relationship between
intra-object parts under the supervision of 3D box annotations.
Shi et al. (2019) proposed to directly generate 3D proposals
from raw point clouds in a bottom-up manner, using semantic
segmentation to validate points to regress detection boxes.
The follow-up work (Yang et al., 2019) further proposed
PointsPool to convert sparse proposal features to compact
representations and used spherical anchors to generate accu-
rate proposals. Shi et al. (2020a) utilized both point-based
and voxel-based methods to fuse multi-scale voxel and point
features. Deng et al. (2021) proposed voxel RoI pooling to
extract RoI features from coarse voxels.

To address the boundary ambiguity problems in 3D object
detection caused by occlusion and signal miss, some studies,
such as SPG (Xu et al., 2021), have tried to use point cloud
completion methods to restore the full shape of objects and
improve the detection performance (Yan et al., 2021; Najibi
et al., 2020). However, generating complete and precise shapes
with incomplete point clouds remains a non-trivial task.

2.2 Probabilistic 3D Object Detector

There are two types of uncertainty in deep learning predic-
tions. A type of uncertainty called aleatoric uncertainty is
caused by the inherent noise in observational data, which
cannot be eliminated. The other type is called epistemic
Uncertainty or model uncertainty, which is caused by incom-
plete training and can be alleviated with more training data.
Most existing state-of-the-art 2D (Liu et al., 2016; Tan et al.,
2020; Carion et al., 2020) and 3D (Shi et al., 2020b) object
detectors produce a deterministic box with a confidence score
for each detection. While the probability score represents
the existence and semantic confidence, it cannot reflect the
uncertainty about predicted localization well. By contrast,
probabilistic object detectors (He et al., 2019; Harakeh et al.,

2020; Varamesh and Tuytelaars, 2020) estimate the proba-
bilistic distribution of predicted bounding boxes rather than
take them as deterministic results. For example, He et al.
(2019) and Choi et al. (2019) modeled the predicted boxes as
Gaussian distributions, the variance of which can indicate the
localization uncertainty and is predicted with additional lay-
ers in the detection head. It introduces the KL Loss between
the predicted Gaussian distribution and the ground-truth
bounding boxes modeled as a Dirac delta function, so the
regression branch is expected to output a larger variance and
get a smaller loss for inaccurate localization estimation for the
cases with ambiguous boundaries. Li et al. (2021) facilitated
the learning of localization quality with distribution statistics
of a bounding box, such as the mean value, which inspires us
to further utilize the estimated uncertainty in UAQE. Meyer
et al. (2019) proposed a probabilistic 3D object detector mod-
eling the distribution of bounding box corners as a Laplacian
distribution.

However, most probabilistic detectors take the ground-
truth bounding box as a deterministic Dirac delta distribution
and ignore the ambiguity in the ground-truth. Therefore, the
localization variance is actually learned in an unsupervised
manner, which may result in sub-optimal localization pre-
cision and erratic training (see our theoretical analysis in
Section 4.1).

2.3 Label Uncertainty Estimation

Label noise (or uncertainty) is a common problem in real-
world datasets and could seriously affect the performance
of supervised learning algorithms. As the neural network
is prone to overfit to even complete random noise (Zhang
et al. (2021)), it is important to prevent the network from
overfitting noisy labels. An obvious solution is to consider the
label of a misclassified sample to be uncertain and remove
the samples (Delany et al., 2012). Garcia et al. (2015) used
a soft voting approach to approximate a noise level for each
sample based on the aggregation of the noise degree predic-
tion calculated for a set of binary classifiers. Luengo et al.
(2018) extended this work by correcting the label when most
classifiers predict the same label for noisy samples. Confident
Learning Northcutt et al. (2021) estimated uncertainty in
dataset labels by estimating the joint distribution of noisy
labels and true labels. However, the above studies mainly
focus on the image classification task.

There only exists a limited number of previous works
focusing on quantifying uncertainty statistics of annotated
ground-truth bounding boxes. Meyer and Thakurdesai (2020)
proposed to model label uncertainty by the IoU between the
label bounding box and the corresponding convex hull of the
aggregated LiDAR observations. However, it is non-learning-
based and thus has limited modeling capacity. Besides, it
only produces uncertainty of the ground-truth box as a whole
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instead of each dimension. Wang et al. (2020) proposed a
Bayes method to estimate label noises by quantifying the
matching degree of point clouds for the given boundary box
with the Gaussian Mixture Model. However, its assumption of
conditional probabilistic independence between point clouds
is often untenable in practice. Differently, we formulate label
uncertainty as the diversity of potentially plausible bounding
boxes. There may be some objects with few points that exactly
match the learned surface points of the corresponding labeled
bounding box, so the label is considered by (Wang et al.
(2020)) to be deterministic. But for an object with sparse
point clouds, our GLENet will output different and plausible
bounding boxes and further estimate high label uncertainty
based on them, regardless of whether points match the given
label. In general, Wang et al. (2020) used the Bayesian
paradigm to estimate the correctness of the annotated box as
the label uncertainty, while our method formulates it as the
diversity of potentially plausible bounding boxes and predicts
it by GLENet.

2.4 Conditional Variational Auto-Encoder

The variational auto-encoder (VAE) (Kingma and Welling,
2014) has been widely used in image and shape genera-
tion tasks (Yan et al., 2016; Nash and Williams, 2017). It
transforms natural samples into a distribution where latent
variables can be drawn and passed to a decoder network
to generate diverse samples. Sohn et al. (2015) introduced
the conditional variational autoencoder (CVAE), which ex-
tends the capabilities of the traditional VAE by incorporating
an additional condition during the generative process. The
CVAE model consists of an encoder, a decoder, and an extra
input, which is usually a label or other structured information
pertinent to the generation task. This auxiliary condition
enables the CVAE to generate more targeted and controlled
samples compared to its unsupervised counterpart, the VAE.
In the NLP field, VAE has been widely applied to many
text generation tasks, such as dialogue response (Zhao et al.,
2017), machine translation (Zhang et al., 2016), story genera-
tion (Wang and Wan, 2019), and poem composing (Li et al.,
2018). VAE and CVAE have also been applied in computer
vision tasks, like image generation (Yan et al., 2016), human
pose estimation (Sharma et al., 2019), medical image segmen-
tation (Painchaud et al., 2020), salient object detection (Li
et al., 2019; Zhang et al., 2020), and modeling human motion
dynamics (Yan et al., 2018a). Recently, VAE and CVAE algo-
rithms have also been applied extensively to applications of
3D point clouds, such as generating grasp poses (Mousavian
et al., 2019) and instance segmentation (Yi et al., 2019).

Inspired by CVAE for generating diverse reasonable re-
sponses in dialogue systems, we propose GLENet adapted
from CVAE to capture the one-to-many relationship between
objects with incomplete point clouds and the potentially

plausible ground-truth bounding boxes. To the best of our
knowledge, we are the first to employ CVAE in 3D object
detection to model label uncertainty.

3 Proposed Label Uncertainty Estimation

As aforementioned, the ambiguity of annotated ground-truth
labels widely exists in 3D object detection scenarios and has
adverse effects on the deep model learning process, which is
not well addressed or even completely ignored by previous
works. To this end, we propose GLENet, a generic and unified
deep learning framework that generates label uncertainty
by modeling the one-to-many relationship between point
cloud objects and potentially plausible bounding box labels.
Then the variance of the multiple outputs of GLENet for a
single object is computed as the label uncertainty, which is
extended as an auxiliary regression objective to enhance the
performance of the downstream 3D object detection task.

3.1 Problem Formulation

Let 𝐶 = {𝑐𝑖}𝑛𝑖=1 be a set of 𝑛 observed LiDAR points belong-
ing to an object, where 𝑐𝑖 ∈ R3 is a 3D point represented
with spatial coordinates. Let 𝑋 be the annotated ground-truth
bounding box of 𝐶 parameterized by the center location
(𝑐𝑥 , 𝑐𝑦 , 𝑐𝑧), the size ( length 𝑙 , width 𝑤, and height ℎ), and
the orientation 𝑟 , i.e., 𝑋 = [𝑐𝑥 , 𝑐𝑦 , 𝑐𝑧 , 𝑤, 𝑙, ℎ, 𝑟] ∈ R7.

We formulate the uncertainty of the annotated ground-
truth label of an object as the diversity of potentially plausible
bounding boxes of the object, which could be quantitatively
measured with the variance of the distribution of the potential
bounding boxes. First, we model the distribution of these
potential boxes conditioned on point cloud 𝐶, denoted as
𝑝(𝑋 |𝐶). Specifically, based on the Bayes theorem, we in-
troduce an intermediate variable 𝑧 to write the conditional
distribution as

𝑝(𝑋 |𝐶) =
∫
𝑧

𝑝(𝑋 |𝑧, 𝐶)𝑝(𝑧 |𝐶)𝑑𝑧. (1)

Then, with 𝑝(𝑋 |𝑧, 𝐶) and 𝑝(𝑧 |𝐶) known, we can adopt a
Monte Carlo method to get multiple bounding box predictions
by sampling 𝑧 multiple times and approximate the variance
of 𝑝(𝑋 |𝐶) with that of the sampled predictions.

In the following, we will introduce our learning-based
framework named GLENet to realize the estimation process.

3.2 Inference Process of GLENet

Fig. 4 (a) shows the flowchart of GLENet parameterized
by neural parameters 𝜃, which aims to predict 𝑝(𝑧 |𝐶) and
𝑝(𝑋 |𝑧, 𝐶). Specifically, under the assumption that the prior
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Fig. 4: The overall workflow of GLENet. In the training phase, we learn parameters 𝜇 and 𝜎 (resp. 𝜇′ and 𝜎′ ) of latent
variable 𝑧 (resp. 𝑧′) through the prior network (resp. recognition network), after which a sample of 𝑧′ and the corresponding
geometrical embedding produced by the context encoder are jointly exploited to estimate the bounding box distribution. In the
inference phase, we sample from the distribution of 𝑧 multiple times to generate different bounding boxes, whose variance we
use as label uncertainty. Note we denote multiple sampling with black, orange, and green lines in subgraph (a).

distribution 𝑝(𝑧 |𝐶) subjects to a multivariate Gaussian distri-
bution parameterized by (𝜇𝑧 , 𝜎𝑧), denoted asN(𝜇𝑧 , 𝜎2

𝑧 ), we
design a prior network, which is composed of PointNet (Qi
et al., 2017) and additional MLP layers, from the input point
cloud 𝐶 to predict the values of (𝜇𝑧 , 𝜎𝑧). Then, we employ a
context encoder to embed the input point cloud 𝐶 into a high
dimensional feature space, leading to the geometric feature
representation 𝑓𝐶 , which is concatenated with 𝑧 sampled from
N(𝜇𝑧 , 𝜎2

𝑧 ) and fed into a prediction network composed of
MLPs to regress the bounding box distribution 𝑝(𝑋 |𝑧, 𝐶), i.e.,
the localization, dimension, and orientation of the bounding
box.

As empirically observed in various related domains
(Goyal et al., 2017), it could be difficult to make use of
latent variables when the prediction network can generate a
plausible output only using the sufficiently expressive features
of condition 𝐶. Therefore, we utilize a simplified PointNet
architecture as the backbone of the context encoder to avoid
posterior collapse. We refer the readers to Section 5.1.3 for
the implementation details of these modules. In the following
sections, we also use 𝑝𝜃 (𝑧 |𝐶), 𝑝𝜃 (𝑋 |𝑧, 𝐶), and 𝑝𝜃 (𝑋 |𝐶) to
denote the predictions of 𝑝(𝑧 |𝐶), 𝑝(𝑋 |𝑧, 𝐶), and 𝑝(𝑋 |𝐶) by
GLENet, respectively.

3.3 Training Process of GLENet

3.3.1 Recognition Network

Given 𝐶 and its annotated bounding box 𝑋 , we assume
there is a true posterior distribution 𝑞(𝑧 |𝑋,𝐶). Thus, during
training, we construct a recognition network parameterized

by network parameters 𝜙 (see Fig. 4 (b)) to learn an auxiliary
posterior distribution 𝑞𝜙 (𝑧′ |𝑋,𝐶) subjecting to a Gaussian
distribution, denoted as N(𝜇′𝑧 , 𝜎′2𝑧 ), to regularize 𝑝𝜃 (𝑧 |𝐶),
i.e., 𝑝𝜃 (𝑧 |𝐶) should be close to 𝑞𝜙 (𝑧′ |𝑋,𝐶).

Specifically, for the recognition network, we adopt the
same learning architecture as the prior network to generate
point cloud embeddings, which are concatenated with ground-
truth bounding box information and fed into the subsequent
MLP layers to learn 𝑞𝜙 (𝑧′ |𝑋,𝐶). Moreover, to facilitate the
learning process, we encode the information 𝑋 into offsets
relative to predefined anchors, and then perform normalization
as:

𝑡𝑐𝑥 =
𝑐
𝑔𝑡
𝑥

𝑑𝑎
, 𝑡𝑐𝑦 =

𝑐
𝑔𝑡
𝑦

𝑑𝑎
, 𝑡𝑐𝑧 =

𝑐
𝑔𝑡
𝑧

ℎ𝑎
,

𝑡𝑤 = log
𝑤𝑔𝑡

𝑤𝑎
, 𝑡𝑙 = log

𝑙𝑔𝑡

𝑙𝑎
, 𝑡ℎ = log

ℎ𝑔𝑡

ℎ𝑎
,

𝑡𝑟 = sin(𝑟𝑔𝑡 ),

(2)

where (𝑤𝑎, 𝑙𝑎, ℎ𝑎) is the size of the predefined anchor located
in the center of the point cloud, and 𝑑𝑎 =

√︁
(𝑙𝑎)2 + (𝑤𝑎)2

is the diagonal of the anchor box. We also take cos(𝑟) as
the additional input of the recognition network to handle the
issue of angle periodicity.

3.3.2 Objective Function

Following CVAE Sohn et al. (2015), we optimize GLENet by
maximizing the variational lower bound of the conditional
log-likelihood 𝑝𝜃 (𝑋 |𝐶):

log 𝑝𝜃 (𝑋 |𝐶) ≥ 𝐸𝑞𝜙 (𝑧′ |𝑋,𝐶 ) [log 𝑝𝜃 (𝑋 |𝑧, 𝐶)]−
𝐾𝐿 (𝑞𝜙 (𝑧′ |𝑋,𝐶) | |𝑝𝜃 (𝑧 |𝐶)),

(3)
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where 𝐸𝑞 [𝑝] returns the expectation of 𝑝 on the distribution
of 𝑞, and 𝐾𝐿 (·) denotes KL-divergence.

Specifically, the first term 𝐸𝑞𝜙 (𝑧′ |𝑋,𝐶 ) [log 𝑝𝜃 (𝑋 |𝑧, 𝐶)]
enforces the prediction network to be able to restore ground-
truth bounding box from latent variables. Following (Yan
et al. (2018b)) and (Deng et al. (2021)), we explicitly define
the bounding box reconstruction loss as

𝐿𝑟𝑒𝑐 = 𝐿
𝑟𝑒𝑔
𝑟𝑒𝑐 + 𝜆𝐿𝑑𝑖𝑟𝑟𝑒𝑐, (4)

where 𝐿𝑟𝑒𝑔𝑟𝑒𝑐 denotes the Huber loss imposed on the prediction
and encoded regression targets as described in Eq. (2), and
𝐿𝑑𝑖𝑟𝑟𝑒𝑐 denotes the binary cross-entropy loss used for direction
classification.

The second term 𝐾𝐿 (𝑞𝜙 (𝑧′ |𝑋,𝐶)∥𝑝𝜃 (𝑧 |𝐶)) is aimed
at regularizing the distribution of 𝑧 by minimizing the KL-
divergence between 𝑝𝜃 (𝑧 |𝐶) and 𝑞𝜙 (𝑧′ |𝑋,𝐶). Since 𝑝𝜃 (𝑧 |𝐶)
and 𝑞𝜙 (𝑧′ |𝑋, 𝐶) are re-parameterized as N(𝜇𝑧 , 𝜎2

𝑧 ) and
N(𝜇′𝑧 , 𝜎′2𝑧 ) through the prior network and the recognition
network, respectively, we can explicitly define the regulariza-
tion loss as:

𝐿𝐾𝐿 (𝑞𝜙 (𝑧′ |𝑋,𝐶)∥𝑝𝜃 (𝑧 |𝐶)) = log
𝜎′𝑧
𝜎𝑧
+
𝜎2
𝑧

2𝜎′2𝑧
+
(𝜇𝑧 − 𝜇′𝑧)2

2𝜎′2𝑧
.

(5)

Thus, the overall objective function is written as

𝐿 = 𝐿𝑟𝑒𝑐 + 𝛾 𝐿𝐾𝐿 , (6)

where we empirically set the hyperparameter 𝛾 to 1 in all
experiments.

4 Probabilistic 3D Detectors with Label Uncertainty

To reform a typical detector to be a probabilistic object
detector, we can enforce the detection head to estimate a
probability distribution over bounding boxes, denoted as
𝑃Θ (𝑦), instead of a deterministic bounding box location:

𝑃Θ (𝑦) =
1

√
2𝜋�̂�2

𝑒
− (𝑦− �̂�)

2

2�̂�2 , (7)

where Θ indicates learnable network weights of a typical
detector, �̂� is the predicted bounding box location, and �̂� is
the predicted localization variance.

Accordingly, we also assume the ground-truth bounding
box as a Gaussian distribution 𝑃𝐷 (𝑦)with variance𝜎2, whose
value is estimated by GLENet:

𝑃𝐷 (𝑦) =
1

√
2𝜋𝜎2

𝑒
− (𝑦−𝑦𝑔 )

2

2𝜎2 , (8)

where 𝑦𝑔 represents the ground-truth bounding box. There-
fore, we can incorporate the generated label uncertainty in the

KL loss between the distribution of prediction and ground-
truth in the detection head:

𝐿𝑟𝑒𝑔 = 𝐷𝐾𝐿 (𝑃𝐷 (𝑦) | |𝑃Θ (𝑦))

= log
�̂�

𝜎
+ 𝜎2

2�̂�2 +
(𝑦𝑔 − �̂�)2

2�̂�2 .
(9)

4.1 More Analysis of KL-Loss

When ignoring label ambiguity and formulating the ground-
truth bounding box as a Dirac delta function, as done in (He
et al. (2019)), the loss in Eq. (9) degenerates into

𝐿
𝑝𝑟𝑜𝑏
𝑟𝑒𝑔 ∝

log(�̂�2)
2

+
(𝑦𝑔 − �̂�)2

2�̂�2 , (10)

and the partial derivative of Eq. (10) with respect to the
predicted variance �̂� is:

𝜕𝐿
𝑝𝑟𝑜𝑏
𝑟𝑒𝑔

𝜕�̂�
=

1
�̂�
−
(𝑦𝑔 − �̂�)2

�̂�3 . (11)

When minimizing Eq. (10), a potential issue is that as |𝑦𝑔 −
�̂� | → 0,

𝜕𝐿
𝑝𝑟𝑜𝑏
𝑟𝑒𝑔

𝜕�̂�
→ 1

�̂�
, (12)

the derivative for �̂� can explode when �̂� → 0. Based on
the property of KL-loss, the prediction is optimal only when
the estimated �̂� = 0 and the localization error |𝑦𝑔 − �̂� | = 0.
Therefore, the gradient explosion may result in erratic training
and sub-optimal localization precision.

By contrast, after modeling the ground-truth bounding
box as a Gaussian distribution, the partial derivative of Eq. (9)
with respect to prediction is:

𝜕𝐿𝑟𝑒𝑔

𝜕�̂�
=

1
�̂�
− 𝜎

2

�̂�3 −
(𝑦𝑔 − �̂�)2

�̂�3 , (13)

and
𝜕𝐿𝑟𝑒𝑔

𝜕�̂�
=
�̂� − 𝑦𝑔
�̂�2 . (14)

As |𝑦𝑔 − �̂� | → 0 and �̂� > 0,

𝜕𝐿𝑟𝑒𝑔

𝜕�̂�
→ 1

�̂�
(1 − 𝜎

2

�̂�2 ), (15)

and
𝜕𝐿𝑟𝑒𝑔

𝜕�̂�
→ 0. (16)

Thus, when the predicted distribution reaches the optimal
solution that is the distribution of ground-truth, i.e., |𝑦𝑔− �̂� | →
0 and �̂� → 𝜎, the derivatives for both �̂� and �̂� become zero,
which is an ideal property for the loss function and avoids the
aforementioned gradient explosion issue.
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(a) 𝐿𝑝𝑟𝑜𝑏𝑟𝑒𝑔 (𝜎 = 0) (b) 𝐿𝑟𝑒𝑔 (𝜎 = 0.2) (c) 𝐿𝑟𝑒𝑔 (𝜎 = 0.5)

Fig. 5: Illustration of the KL-divergence between distributions as a function of localization error |𝑦𝑔 − �̂� | and estimated
localization variance �̂� given different label uncertainty 𝜎. With label uncertainty 𝜎 estimated by GLENet instead of zero, the
gradient is smoother when the loss converges to the minimum. Besides, the 𝐿𝑟𝑒𝑔 is smaller when 𝜎 is larger, which prevents
the model from overfitting to uncertain annotations.

Fig. 6: (a) Illustration of the relationship between the actual localization precision (i.e., IoU between predicted and ground-truth
bounding box) and the variance predicted by a probabilistic detector. Here, we reduce the dimension of the variance with PCA
to facilitate visualization. (b) Two examples: for the sparse sample, the prediction has high uncertainty and low localization
quality, while for the dense sample, the prediction has high localization quality and low uncertainty estimation.

Fig. 5 shows the landscape of the KL-divergence loss func-
tion under different label uncertainty 𝜎, which are markedly
different in shape and property. The 𝐿 𝑝𝑟𝑜𝑏𝑟𝑒𝑔 approaches in-
finitesimal and the gradient explodes as |𝑦𝑔 − �̂� | → 0 and
�̂� → 0. However, when we introduce the estimated label
uncertainty and the predicted distribution is equal to the
ground-truth distribution, the KL Loss has a determined
minimum value of 0.5 and the gradient is smoother.

4.2 Uncertainty-aware Quality Estimator

Most state-of-the-art two-stage 3D object detectors use an IoU-
related confidence score as the sorting criterion in NMS (non-
maximum suppression), indicating the localization quality
rather than the classification score. As shown in Fig. 6, there
is a strong correlation between the uncertainty and actual
localization quality for each bounding box. This observation

Fig. 7: Illustration of the proposed UAQE module in the
detection head using the learned localization variance to
assist the training of localization quality (IoU) estimation
branch.

motivates us to use uncertainty as a criterion for judging the
quality of the boxes. However, the estimated uncertainty is
7-dimensional, making it infeasible to directly replace the
IoU confidence score with the uncertainty. To overcome this
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Algorithm 1: 3D Variance Voting
Data: 𝐵 is an 𝑁 × 7 matrix of predicted bounding boxes with

parameters (𝑥, 𝑦, 𝑧, 𝑤, 𝑙, ℎ, 𝜃 ) . 𝐶 is the
corresponding variance. 𝑆 is a set of N corresponding
confidence values. 𝜎𝑡 is a tunable hyperparameter.

Result: The final voting results 𝐷 of selected candidate boxes.
1 𝐵 = {𝑏1, 𝑏2, ..., 𝑏𝑁 }; and 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑁 };
2 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑁 }; and 𝐿 = {1, 2, ..., 𝑁 };
3 𝐷 ← {};
4 𝑖𝑜𝑢𝑡ℎ𝑟𝑒𝑠ℎ ← 𝜇;
5 while 𝐿 ≠ ∅ do
6 idx =argmax

𝑖∈𝐿
𝑆, 𝑏′ = 𝑏𝑖𝑑𝑥 ;

7 𝐿′ = {𝑖 |𝑖 ∈ 𝐿, 𝐼𝑜𝑈 (𝑏𝑖 , 𝑏′ ) > 𝑖𝑜𝑢𝑡ℎ𝑟𝑒𝑠ℎ };
8 𝑃 ← {};
9 for 𝑖 ∈ 𝐿′ do

10 𝑝𝑖 = 𝑒
−(1−𝐼𝑜𝑈 (𝑏𝑖 ,𝑏) )2/𝜎𝑡 ;

11 if |𝑡𝑎𝑛(𝑏𝜃
𝑖
− 𝑏′ 𝜃 ) | > 1 then

12 𝑝𝜃
𝑖
= 0;

13 end
14 𝑃 ← 𝑃

⋃
𝑝𝑖 ;

15 end
16 𝑏𝑚 =

∑
𝑖∈𝐿′ 𝑏𝑖 ·𝑝𝑖/𝑐𝑖∑
𝑖∈𝐿′ 𝑝𝑖/𝑐𝑖 , 𝑝𝑖 ∈ 𝑃, 𝑏𝑖 ∈ 𝐵, 𝑐𝑖 ∈ 𝐶;

17 𝐷 ← 𝐷
⋃
𝑏𝑚;

18 𝐿 ← 𝐿 − 𝐿′;
19 end

issue, we propose an uncertainty-aware quality estimator
(UAQE) that introduces uncertainty information to facilitate
the training of the IoU-branch and improve the accuracy of
IoU estimation. The UAQE is shown in Fig. 7. Given the
predicted uncertainty as input, we construct a lightweight
sub-module consisting of two fully connected (FC) layers
followed by the Sigmoid activation to generate a coefficient.
The original output of the IoU-branch is then multiplied with
this coefficient to obtain the final estimation. The UAQE aims
to capture the uncertainty in the estimation and adjust the final
output accordingly, resulting in a more accurate estimation
of the IoU score.

4.3 3D Variance Voting

Considering that in probabilistic object detectors, the learned
localization variance by the KL loss can reflect the uncertainty
of the predicted bounding boxes, following (He et al., 2019),
we also propose 3D variance voting to combine neighboring
bounding boxes to seek a more precise box representation.
Specifically, at a single iteration in the loop, box 𝑏 with the
maximum score is selected and its new location is calculated
according to itself and the neighboring boxes. During the
merging process, the neighboring boxes that are closer and
have a low variance are assigned higher weights. Note that
neighboring boxes with a large angle difference from 𝑏 do not
participate in the ensembling of angles. We refer the readers
to Algorithm 1 for the details.

5 Experiments

To reveal the effectiveness and universality of our method, we
integrated GLENet into several popular types of 3D object
detection frameworks to form probabilistic detectors, which
were evaluated on two commonly used benchmark datasets,
i.e., the Waymo Open dataset (WOD) (Sun et al., 2020) and the
KITTI dataset (Geiger et al., 2012). Specifically, we start by
introducing specific experiment settings and implementation
details in Section 5.1. After that, we report the detection
performance of the resulting probabilistic detectors and make
comparisons with previous state-of-the-art approaches in
Sections 5.2 and 5.3. Finally, we conduct a series of ablation
studies to verify the necessity of different key components
and configurations in Section 5.4.

5.1 Experiment Settings

5.1.1 Benchmark Datasets

The KITTI dataset contains 7481 training samples with anno-
tations in the camera field of vision and 7518 testing samples.
According to the occlusion level, visibility, and bounding
box size, the samples are further divided into three difficulty
levels: simple, moderate, and hard. Following common prac-
tice, when performing experiments on the val set, we further
split all training samples into a subset with 3712 samples for
training and the remaining 3769 samples for validation. We
report the performance on both the val set and online test
leaderboard for comparison. And we use all training data for
the test server submission.

The Waymo Open dataset is a large-scale autonomous driving
dataset with more diverse scenes and object annotations in full
360◦, which contains 798 sequences (158361 LiDAR frames)
for training and 202 sequences (40077 LiDAR frames) for
validation. These frames are further divided into two difficulty
levels: LEVEL1 for boxes with more than five points and
LEVEL2 for boxes with at least one point. We report perfor-
mance on both LEVEL 1 and LEVEL 2 difficulty objects
using the recommended metrics, mean Average Precision
(mAP) and mean Average Precision weighted by heading
accuracy (mAPH). To conduct the experiments efficiently, we
created a representative training set by randomly selecting
20% of the frames from the original training set, which com-
prises approximately 32,000 frames. All evaluations were
performed on the complete validation set, consisting of around
40,000 frames, using the official evaluation tool.

5.1.2 Evaluation Metric for GLENet

Due to the unavailability of the true distribution of a ground-
truth bounding box, we propose to evaluate GLENet in a
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Fig. 8: Illustration of the occlusion data augmentation. (a) The point cloud of the original object associated with the annotated
ground-truth bounding box. (b) A sampled dense object (red) is placed between the LiDAR sensor and the original object
(blue). (c) The projected range image from the point cloud in (b), where the convex hull (the red polygon) of the sampled
object is calculated and further jittered to increase the diversity of occluded samples. Based on the convex hull (the green
polygon) of the original point cloud, the occluded area can be obtained. The point cloud of the original object corresponding
to the occluded area is removed. (d) Final augmented object with the annotated ground-truth bounding boxes.

non-reference manner, in which the negative log-likelihood
between the estimated distribution of ground-truth 𝑝𝐷 (𝑋 |𝐶)
subjecting to a Gaussian distribution N(𝑡, 𝜎2) and 𝑝𝜃 (𝑋 |𝐶)
is computed:

𝐿𝑁𝐿𝐿 (𝜃) = −
∫

𝑝𝜃 (𝑋 |𝐶) log 𝑝𝐷 (𝑋 |𝐶)d𝑋 (17)

≈ − 1
𝑆

𝑆∑︁
𝑖=1

log 𝑝𝐷 (𝑋𝑖 |𝐶)

= − 1
𝑆

𝑆∑︁
𝑖=1

∑︁
𝑘∈{𝑐𝑥 ,𝑐𝑦 ,
𝑐𝑧 ,𝑤,𝑙,ℎ,𝑟}

(𝑡𝑖
𝑘
− 𝑡𝑖

𝑘
)2

2𝜎𝑘2 +
log(𝜎2

𝑘
)

2
+ log(2𝜋)

2
,

where 𝑆 denotes the number of inference times, 𝑋𝑖 is the result
of the 𝑖-th inference, and 𝑡𝑖

𝑘
and 𝑡𝑖

𝑘
represent the regression

targets and the predicted offsets, respectively. We estimate
the integral by randomly sampling multiple prediction results
via the Monte Carlo method. Generally, the value of 𝐿𝑁𝐿𝐿
is small when GLENet outputs reasonable bounding boxes,
i.e., predicting diverse plausible boxes with high variance for
incomplete point cloud and consistent, precise boxes with
low variance for high-quality point cloud, respectively.

5.1.3 Implementation Details

To prevent data leakage, we kept the dataset division of
GLENet consistent with that of the downstream detectors. As
the initial input of GLENet, the point cloud of each object
was uniformly pre-processed into 512 points via random
subsampling/upsampling. Then we decentralized the point
cloud by subtracting the coordinates of the center point to
eliminate the local impact of translation.

Architecturally, we realized the prior network and recogni-
tion network with an identical PointNet structure consisting of
three FC layers of output dimensions (64, 128, 512), followed
by another FC layer to generate an 8-dim latent variable. To
avoid posterior collapse, we particularly chose a lightweight

PointNet structure with channel dimensions (8, 8, 8) in the
context encoder. The prediction network concatenates the gen-
erated latent variable and context features and feeds them into
subsequent FC layers of channels (64, 64) before predicting
offsets and directions.

5.1.4 Training and Inference Strategies

To optimize GLENet, we adopted Adam (Kingma and Ba,
2015) with a learning rate of 0.003, 𝛽1 of 0.9, and 𝛽2 of 0.99.
The model was trained for a total of 400 epochs on KITTI
and 40 epochs on Waymo, with a batch size of 64 on 2 GPUs.
We used the one-cycle policy (Smith, 2017) to update the
learning rate.

In the training process, we applied common data aug-
mentation strategies, including random flipping, scaling, and
rotation, in which the scaling factor and rotation angle were
uniformly drawn from [0.95, 1.05] and [−𝜋/4, 𝜋/4], respec-
tively. It is important to include multiple plausible ground-
truth boxes in training, especially for incomplete point clouds,
so we further propose an occlusion-driven augmentation
approach, as illustrated in Fig. 8, after which a complete
point cloud may look similar to another incomplete point
cloud, while the ground-truth boxes of them are completely
different. To overcome posterior collapse, we also adopted
KL annealing (Bowman et al., 2016) to gradually increase
the weight of the KL loss from 0 to 1. We followed k-fold
cross-sampling to divide all training objects into ten mutually
exclusive subsets. To overcome overfitting, each time we
trained GLENet on 9 subsets and then made predictions on
the remaining subset to generate label uncertainty estimations
on the whole training set. During inference, we sampled the
latent variable 𝑧 from the predicted prior distribution 𝑝𝜃 (𝑧 |𝑐)
30 times to form multiple predictions, the variance of which
was used as the label uncertainty.
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Table 1: Quantitative comparison with state-of-the-art methods on the KITTI test set for vehicle detection, under the evaluation
metric of 3D Average Precision (AP) of 40 sampling recall points. The best and second-best results are highlighted in bold and
underlined, respectively.

Method Reference Modality 3D AP𝑅40
Easy Mod. Hard mAP

MV3D (Chen et al., 2017) CVPR’17 RGB+LiDAR 74.97 63.63 54.00 64.20
F-PointNet (Qi et al., 2018) CVPR’18 RGB+LiDAR 82.19 69.79 60.59 70.86
MMF (Liang et al., 2019) CVPR’19 RGB+LiDAR 88.40 77.43 70.22 78.68

PointPainting (Vora et al., 2020) CVPR’20 RGB+LiDAR 82.11 71.70 67.08 73.63
CLOCs (Pang et al., 2020) IROS’20 RGB+LiDAR 88.94 80.67 77.15 82.25
EPNet (Huang et al., 2020) ECCV’20 RGB+LiDAR 89.81 79.28 74.59 81.23
3D-CVF (Yoo et al., 2020) ECCV’20 RGB+LiDAR 89.20 80.05 73.11 80.79

STD (Yang et al., 2019) ICCV’19 LiDAR 87.95 79.71 75.09 80.92
Part-A2 (Shi et al., 2020b) TPAMI’20 LiDAR 87.81 78.49 73.51 79.94
3DSSD (Yang et al., 2020) CVPR’20 LiDAR 88.36 79.57 74.55 80.83
SA-SSD (He et al., 2020) CVPR’20 LiDAR 88.80 79.52 72.30 80.21

PV-RCNN (Shi et al., 2020a) CVPR’20 LiDAR 90.25 81.43 76.82 82.83
PointGNN (Shi and Rajkumar, 2020b) CVPR’ 20 LiDAR 88.33 79.47 72.29 80.03

Voxel-RCNN (Deng et al., 2021) AAAI’21 LiDAR 90.90 81.62 77.06 83.19
SE-SSD (Zheng et al., 2021b) CVPR’21 LiDAR 91.49 82.54 77.15 83.73

VoTR (Mao et al., 2021b) ICCV’21 LiDAR 89.90 82.09 79.14 83.71
Pyramid-PV (Mao et al., 2021a) ICCV’21 LiDAR 88.39 82.08 77.49 82.65

CT3D (Sheng et al., 2021) ICCV’21 LiDAR 87.83 81.77 77.16 82.25
GLENet-VR (Ours) - LiDAR 91.67 83.23 78.43 84.44

Table 2: Quantitative comparison of different methods on the KITTI validation set for vehicle detection, under the evaluation
metric of 3D Average Precision (AP) calculated with 11 sampling recall positions. The 3D APs under 40 recall sampling recall
points are also reported for the moderate car class. The best and second-best results are highlighted in bold and underlined,
respectively.

Methods Reference 3D AP𝑅11 3D AP𝑅40
Easy Moderate Hard Easy Moderate Hard

Part-𝐴2 (Shi et al., 2020b) TPAMI’20 89.47 79.47 78.54 - - -
3DSSD (Yang et al., 2020) CVPR’20 89.71 79.45 78.67 - - -
SA-SSD (He et al., 2020) CVPR’20 90.15 79.91 78.78 92.23 84.30 81.36

PV-RCNN (Shi et al., 2020a) CVPR’20 89.35 83.69 78.70 92.57 84.83 83.31
SE-SSD (Zheng et al., 2021b) CVPR’21 90.21 85.71 79.22 93.19 86.12 83.31

VoTR (Mao et al., 2021b) ICCV’21 89.04 84.04 78.68 - - -
Pyramid-PV (Mao et al., 2021a) ICCV’21 89.37 84.38 78.84 - - -

CT3D (Sheng et al., 2021) ICCV’21 89.54 86.06 78.99 92.85 85.82 83.46
SECOND (Yan et al., 2018b) Sensors’18 88.61 78.62 77.22 91.16 81.99 78.82

GLENet-S (Ours) - 88.68 82.95 78.19 91.73 84.11 81.35
CIA-SSD (Zheng et al., 2021a) AAAI’21 90.04 79.81 78.80 93.59 84.16 81.20

GLENet-C (Ours) - 89.82 84.59 78.78 93.20 85.16 81.94
Voxel R-CNN (Deng et al., 2021) AAAI’21 89.41 84.52 78.93 92.38 85.29 82.86

GLENet-VR (Ours) - 89.93 86.46 79.19 93.51 86.10 83.60

5.1.5 Base Detectors

We integrated GLENet into four popular deep 3D object
detection frameworks, i.e., SECOND (Yan et al., 2018b),
CIA-SSD (Zheng et al., 2021a), CenterPoint (two-stage) (Yin
et al., 2021), and Voxel R-CNN (Deng et al., 2021), to con-
struct probabilistic detectors, which are dubbed as GLENet-
S, GLENet-C, GLENet-CP, and GLENet-VR, respectively.
Specifically, we introduced an extra FC layer on the top of the
detection head to estimate standard deviations along with the
box locations. Meanwhile, we applied the proposed UAQE
to GLENet-VR to facilitate the training of the IoU-branch.

Generally, we set the value of 𝜎𝑡 to 0.05 and the value of 𝜇
to 0.01 in KITTI and 0.7 in Waymo dataset in 3D variance
voting. Note that for fair comparisons, we kept the network
configurations of these base detectors unchanged except those
related to the new submodules.

5.2 Evaluation on the KITTI Dataset

We compared GLENet-VR with state-of-the-art detectors on
the KITTI test set, and Table 1 reports the AP and mAP that
averages over the APs of easy, moderate and hard objects. As
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Table 3: Performance comparisons on the KITTI val set for
pedestrian and cyclist class using AP𝑅11.

Method Pedestrian Cyclist
Easy Moderate Hard Easy Moderate Hard

Second 56.55 52.97 47.73 80.59 67.14 63.11
GLENet-S 58.22 52.39 49.53 82.67 68.29 65.62

Voxel R-CNN 66.32 60.52 55.42 86.62 70.69 66.05
GLENet-VR 66.18 62.05 56.00 87.28 74.07 70.90

of March 29𝑡ℎ, 2022, our GLENet-VR surpasses all published
single-modal detection methods by a large margin and ranks
1𝑠𝑡 among all published LiDAR-based approaches. Besides,
Fig. 9 also provides the detailed Precision-Recall (PR) curves
of GLENet-VR on KITTI test split.

Table 2 lists the validation results of different detection
frameworks on the KITTI dataset, from which we can observe
that GLENet-S, GLENet-C, and GLENet-VR consistently
outperform their corresponding baseline methods, i.e., SEC-
OND, CIA-SSD, and Voxel R-CNN, by 4.79%, 4.78%, and
1.84% in terms of 3D R11 AP on the category of moderate
car. Particularly, GLENet-VR achieves 86.36% AP on the
moderate car class, which surpasses all other state-of-the-
art methods. Besides, as a single-stage method, GLENet-C
achieves 84.59% AP for the moderate vehicle class, which
is comparable to the existing two-stage approaches while
achieving relatively lower inference costs. It is worth noting
that our method is compatible with mainstream detectors
and can be expected to achieve better performance when
combined with stronger base detectors. Besides, our method
also performs well on other classes. As shown in Table 3,
GLENet-S outperforms the Second by +1.8% and +2.51%
on pedestrian and cyclist classes respectively for 3D AP on
the hard difficulty. And for the baseline Voxel R-CNN, our
method improves the performance by +1.47% and +3.38%

Fig. 9: PR curves of GLENet-VR on the car class of the
KITTI test set.

on pedestrian and cyclist classes respectively on the moderate
difficulty.

5.3 Evaluation on the Waymo Open Dataset

In Table 4, we present a comprehensive comparison of various
state-of-the-art methods for vehicle detection on the Waymo
Open Dataset, considering both LEVEL 1 and LEVEL 2 diffi-
culty settings. The evaluation metrics used in this comparison
include the 3D mean Average Precision (mAP) for different
distance ranges (0-30m, 30-50m, and 50m-inf) and the overall
mAP for LEVEL 1 and LEVEL 2. Specifically, our method
contributes 2.44%, 1.21% and 1.24% improvements in terms
of LEVEL 1 mAP for SECOND, CenterPoint-TS and Voxel
R-CNN, respectively. The improvements observed in the ta-
ble demonstrate that our method is robust and consistently
enhances the performance of baseline models like SECOND
and Voxel R-CNN. And GLENet-VR demonstrates the best
performance with an mAP of 77.32% and 69.68% for LEVEL
1 and LEVEL 2, respectively. This superior performance can
be attributed to the effective handling of bounding box am-

Table 4: Quantitative comparison of different methods on the Waymo validation set for vehicle detection. ★: experiment results
re-produced with the code of OpenPCDeta. The best and second-best results are highlighted in bold and underlined, respectively.

Methods LEVEL 1 3D mAP mAPH LEVEL 2 3D mAP mAPH
Overall 0-30m 30-50m 50m-inf Overall Overall 0-30m 30-50m 50m-inf Overall

PointPillar (Lang et al., 2019) 56.62 81.01 51.75 27.94 - - - - - -
MVF (Zhou et al., 2020) 62.93 86.30 60.02 36.02 - - - - - -

PV-RCNN (Shi et al., 2020a) 70.30 91.92 69.21 42.17 69.69 65.36 91.58 65.13 36.46 64.79
VoTr-TSD (Mao et al., 2021b) 74.95 92.28 73.36 51.09 74.25 65.91 - - - 65.29

Pyramid-PV (Mao et al., 2021a) 76.30 92.67 74.91 54.54 75.68 67.23 - - - 66.68
CT3D (Sheng et al., 2021) 76.30 92.51 75.07 55.36 - 69.04 91.76 68.93 42.60 -

SECOND★ (Yan et al., 2018b) 69.85 90.71 68.93 41.17 69.40 62.76 86.92 62.57 35.89 62.30
GLENet-S (Ours) 72.29 91.02 71.86 45.43 71.85 64.78 87.56 65.11 38.60 64.25

CenterPoint-TS★ (Yin et al., 2021) 75.52 92.09 74.35 54.27 75.07 67.37 90.89 68.11 42.46 66.94
GLENet-CP (Ours) 76.73 92.70 75.70 55.77 76.27 68.50 91.95 69.43 43.68 68.08

Voxel R-CNN★ (Deng et al., 2021) 76.08 92.44 74.67 54.69 75.67 68.06 91.56 69.62 42.80 67.64
GLENet-VR (Ours) 77.32 92.97 76.28 55.98 76.85 69.68 92.09 71.21 44.36 68.97

a Reference: https://github.com/open-mmlab/OpenPCDet.
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biguity, especially for distant and sparse point cloud objects.
In addition to the overall performance, our methods also
exhibit noteworthy improvements in the 30-50m and 50m-inf
distance ranges. These results indicate that our method is
particularly effective in resolving ambiguity for objects that
are farther away from the sensor, which has traditionally
posed challenges for point cloud-based detection algorithms.
In conclusion, Table 4 highlights the superior performance
of our methods in 3D detection tasks on the Waymo Open
Dataset. By effectively addressing the challenges posed by dis-
tant and sparse point cloud objects, our method demonstrates
significant improvements in both LEVEL 1 and LEVEL 2
difficulty settings across various distance ranges.

5.4 Ablation Study

We conducted ablative analyses to verify the effectiveness
and characteristics of our processing pipeline. In this section,
all the involved model variants are built upon the Voxel R-
CNN baseline and evaluated on the KITTI dataset, under
the evaluation metric of average precision calculated with 40
recall positions.

5.4.1 Comparison with Other Label Uncertainty Estimation

We compared GLENet with two other ways of label uncer-
tainty estimation: 1) treating the label distribution as the
deterministic Dirac delta distribution with zero uncertainty;
2) estimating the label uncertainty with simple heuristics, i.e.,
the number of points in the ground-truth bounding box or the
IoU between the label bounding box and its convex hull of
the aggregated LiDAR observations (Meyer and Thakurdesai,
2020). As shown in Table 5, our method consistently outper-
forms existing label uncertainty estimation paradigms. Com-
pared with heuristic strategies, our deep generative learning
paradigm can adaptively estimate label uncertainty statistics
in 7 dimensions, instead of the uncertainty of bounding boxes
as a whole, considering the variance in each dimension could
be very different.

Besides, to compare with (Wang et al., 2020), whose code
is not publicly available, we evaluated our method under its
experiment settings and compared results with its reported
performance. As shown in Table 6, our method outperforms
(Wang et al., 2020) significantly in terms of AP𝐵𝐸𝑉 on both
moderate and hard levels.

5.4.2 Key Components of Probabilistic Detectors

We analyzed the contributions of different key components in
our constructed probabilistic detectors and reported results
in Table 7. According to the second row, we can conclude
that only training with the KL loss brings little performance
gain. Introducing the label uncertainty generated by GLENet

Table 5: Comparison of different label uncertainty estimation
approaches. ”Convex hull” refers to the method in (Meyer
and Thakurdesai, 2020). The best results are highlighted in
bold.

Methods 3D AP𝑅40
Easy Moderate Hard

Voxel R-CNN 92.38 85.29 82.86
GLENet-VR w/ 𝐿𝐾𝐿𝐷 (𝜎2=0) 92.48 85.37 83.05
GLENet-VR w/ 𝐿𝐾𝐿𝐷 (points num) 92.46 85.58 83.16
GLENet-VR w/ 𝐿𝐾𝐿𝐷 (convex hull) 92.33 85.45 82.81
GLENet-VR w/ 𝐿𝐾𝐿𝐷 (Ours) 93.49 86.10 83.56

Table 6: Comparison of our method with (Wang et al., 2020)
on the KITTI val set. The best results are highlighted in bold.

Method 𝐴𝑃𝐵𝐸𝑉 for IoU@0.7
Easy Mod. Hard

PIXOR (Yang et al., 2018) 86.79 80.75 76.60
ProbPIXOR + L𝐾𝐿𝐷 (𝜎 = 0) 88.60 80.44 78.74
ProbPIXOR + L𝐾𝐿𝐷 (Wang et al., 2020) 92.22 82.03 79.16
ProbPIXOR + L𝐾𝐿𝐷 (Ours) 91.50 84.23 81.85

into the KL Loss contributes 0.75%, 0.51%, and 0.3% im-
provements on the APs of easy, moderate, and hard classes,
respectively, which demonstrates its regularization effect on
KL-loss (Eq. 9) and its ability to estimate more reliable
uncertainty statistics of bounding box labels. The proposed
UAQE module in the probabilistic detection head boosts the
easy, moderate, and hard APs by 0.25%, 0.19% and 0.15%,
respectively, validating its effectiveness in estimating the
localization quality.

To gain a better understanding of how UAQE enhances
the estimation of IoU-related confidence scores (the location
quality), we analyze the error in IoU estimation for both
GLENet-VR and the baseline model (w/o UAQE) over dif-
ferent actual IoU values between the proposals and their
corresponding ground-truth boxes. Figure 10 illustrates the
changes in the error distribution of IoU estimation. We can
observe that the UAQE module effectively reduces the IoU
estimation error across various intervals of actual IoU values,
such as [0.1, 0.6). These findings demonstrate that the UAQE
module not only improves the overall average precision (AP)
metric but also enhances the accuracy of location quality
estimation.

5.4.3 Ablation Study of GLENet

Effectiveness of Preprocessing. As mentioned previously,
to eliminate the local impact of translation on the input of
GLENet, the point cloud of a single object is standardized
to zero mean value. However, this process might remove
meaningful information contained in distances. For instance,
distant objects with fewer points typically have high label
uncertainty, while closer objects usually have a high point
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Table 7: Contribution of each component in our constructed
GLENet-VR pipeline. “LU” denotes the label uncertainty.

KL loss LU var voting UAQE Easy Moderate Hard
92.38 85.29 82.86

✓ 92.45 85.25 82.99
✓ ✓ 92.48 85.37 83.05
✓ ✓ 93.20 85.76 83.29
✓ ✓ ✓ 93.24 85.91 83.41
✓ ✓ ✓ ✓ 93.49 86.10 83.56

Fig. 10: Boxplots are used to display the estimated IoU error
across various intervals of true IoU values. The x-axis repre-
sents the real IoU between proposals and their corresponding
GT boxes, while the y-axis represents the distribution of esti-
mation error, which is the difference between the estimated
IoU score and the real IoU. The boxplot provides information
about the distribution of error through five summary statistics:
the minimum value, the maximum value, the median, the first
quartile (Q1), and the third quartile (Q3).

count and low label uncertainty. For this reason, we performed
experiments by adding the absolute coordinates of the point
cloud as an extra feature in the input of GLENet. However, as
shown in Table 8, the inclusion of extra absolute coordinates
did not yield any significant improvement in the 𝐿𝑁𝐿𝐿 met-
ric or the performance of downstream detectors. We reason
these observations from two aspects. First, the additional
absolute coordinates may differentiate objects that are located
in different positions but have similar appearances. As a
result, there may be fewer samples with similar shapes but
different bounding box labels, making it difficult for GLENet
to capture the one-to-many relationship between incomplete
point cloud objects and potential plausible bounding boxes.
Second, the absolute distance and the point cloud density
are generally correlated, i.e., an object with a larger absolute
distance generally has a sparser point cloud representation,
and such correlation could be perceived by the network. In
other words, the absolute distance information is somewhat
redundant to the network.

Table 8: Effect of point cloud input with and without absolute
coordinates in GLENet. “NC” denotes normalized coordi-
nates of the partial point cloud, and “AC” denotes absolute
coordinates. We report the 𝐿𝑁𝐿𝐿 for evaluation of GLENet
and the 3D average precisions of 40 sampling recall points
for evaluation of downstream detectors.

NC AC 𝐿𝑁𝐿𝐿↓ Easy Mod. Hard Avg
✓ 91.50 93.49 86.10 83.56 87.72
✓ ✓ 147.33 93.21 85.66 83.35 87.41

Table 9: Ablation study on occlusion augmentation techniques
and context encoder in GLENet, in which we report the 𝐿𝑁𝐿𝐿
for evaluation of GLENet and the 3D average precisions of 40
sampling recall points for evaluation of downstream detectors.

Setting 𝐿𝑁𝐿𝐿↓ Easy Mod. Hard Avg.
Baseline 91.50 93.49 86.10 83.56 87.72

w/o Occlusion Augmentation 230.10 92.96 85.52 83.07 87.18
w/o Context Encoder 434.93 92.65 85.31 82.59 86.85

Influence of Data Augmentation. To generate similar point
cloud shapes with diverse ground-truth bounding boxes dur-
ing training of GLENet, we proposed an occlusion data
augmentation strategy and generated more incomplete point
clouds while keeping the bounding boxes unchanged (see
Fig. 8). As listed in Table 9, it can be seen that the occlusion
data augmentation effectively enhances the performance of
GLENet and the downstream detection task.

Necessity of the Context Encoder. In addition to learning
the distribution of latent variables, the prior and recognition
networks are also capable of extracting features from point
clouds. To verify the necessity of the context encoder that
is responsible for encoding contextual information from the
input data in GLENet, we conducted an ablation experiment.
As shown in Table 9, after removing the context encoder,
we observed a significant deterioration in both the 𝐿𝑁𝐿𝐿
metric and the average precision (AP) of the downstream
detector. These results clearly demonstrate the necessity of
the context encoder to extract geometric features from point
clouds and allow the recognition and prior networks to focus
on capturing the underlying structure of the input data in
a low-dimensional space. Without the context encoder, the
recognition and prior networks would need to learn both the
geometric features and the contextual information from the
input data, which would lead to poorer performance.

Dimension of the Latent Variable. Table. 10 shows the
performance of adopting latent variables with various dimen-
sions for GLENet. We can observe that the accuracy increase
gradually, with the dimensions of latent variables from 2 to
8, and the setting of 32-dimensional latent variables achieve
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Table 10: Ablation study of the dimensions of latent variables
in GLENet.

Dimensions 𝐿𝑁𝐿𝐿↓ Easy Mod. Hard Avg.
2 856.48 92.05 84.69 82.22 86.32
4 605.11 92.25 85.11 82.24 86.53
8 91.50 93.49 86.15 83.56 87.73
32 86.16 93.28 85.94 83.60 87.60
64 110.49 93.11 85.51 83.27 87.30
128 105.93 92.74 85.82 83.10 87.22

Table 11: Ablation study of the sampling times to calculate
label uncertainty in GLENet.

Times 𝐿𝑁𝐿𝐿↓ Easy Mod. Hard Avg.
4 608.82 92.54 85.11 81.21 86.29
8 240.08 92.96 85.52 82.80 87.09
16 148.21 92.99 85.66 83.35 87.33
30 91.5 93.49 86.10 83.56 87.72
64 86.76 93.37 86.16 83.42 87.65
128 77.06 93.53 85.92 83.47 87.64

similar performance. The results demonstrate a too-small
dimension of the latent variables makes the GLENet unable
to fully represent the underlying structure of the input data.
And setting the dimension of latent variables to larger values
like 64 or 128 can lead to over-fitting and slight decreases in
performance. When the dimension of the latent variables is
too large, the model can easily memorize the noise and details
in the training data, which is not helpful for generating new
and useful samples. Besides, though the setting of 32-dim
latent variables leads to the lowest 𝐿𝑁𝐿𝐿 , the performance
of downstream detectors is best using label uncertainty with
8-dim latent variables. Therefore, though the 𝐿𝑁𝐿𝐿 metric
can reflect the quality of generating of GLENet to some
extent, it is not guaranteed to be strongly correlated with the
performance of downstream detectors.

Effects of the Sampling Times. In Table 11, we investigate
the effects of the sampling times to calculate label uncertainty.
We can observe that larger sampling times generally achieve
lower 𝐿𝑁𝐿𝐿 and better performance of downstream detectors,
and similar performance is observed when using more than 30
sampling times. Statistically speaking, the variance obtained
after a certain number of sampling times will tend to stabilize.
Hence, to balance the computation cost and performance, we
empirically choose to calculate the label uncertainty with
predicted multiple bounding boxes by sampling the latent
variables 30 times.

5.4.4 Conditional Analysis

To figure out in what cases our method improves the base de-
tector most, we evaluated GLENet-VR on different occlusion
levels and distance ranges. As shown in Table 12, compared

Table 12: Comparison on different occlusion levels and
distance rangesa, evaluated by the 3D Average Precision (AP)
calculated with 40 sampling recall positions on the KITTI
val set.

Methods Voxel R-CNN
(Deng et al., 2021)

GLENet-VR
(Ours) Improvement

Occlusionb
0 92.35 93.51 +1.16
1 76.91 78.64 +1.73
2 54.32 56.93 +2.61

Distance
0-20m 96.42 96.69 +0.27
20-40m 83.82 86.87 +3.05
40m-Inf 38.86 39.82 +0.96

a The results include separate APs for objects belonging to different
occlusion levels and APs for the moderate vehicle class in different
distance ranges.

b Definition of occlusion levels: levels 0, 1 and 2 correspond to fully
visible samples, partly occluded samples, and samples difficult to
see respectively.

Table 13: Inference time comparison for different baselines
on the KITTI dataset.

Method FPS (Hz)
SECOND Yan et al. (2018b) 23.36
GLENet-S (Ours) 22.80
CIA-SSD Zheng et al. (2021a) 27.18
GLENet-C (Ours) 28.76
Voxel R-CNN Deng et al. (2021) 21.08
GLENet-VR (Ours) 20.82

with the baseline, our method mainly improves on the heavily
occluded and distant samples, which suffer from more serious
boundary ambiguities of ground-truth bounding boxes.

5.4.5 Inference Efficiency

We evaluated the inference speed of different baselines with a
batch size of 1 on a desktop with Intel CPU E5-2560 @ 2.10
GHz and NVIDIA GeForce RTX 2080Ti GPU. As shown
in Table 13, our approach does not significantly increase the
computational overhead. Particularly, GLENet-VR only takes
0.6 more ms than the base Voxel R-CNN, since the number of
candidates for the input of variance voting is relatively small
in two-stage detectors.

5.5 Comparison of Visual Results

Fig. 11 visualizes the detection results of our GLENet-VR and
the baseline Voxel R-CNN on the KITTI val set, where it can
be seen that our GLENet-VR obtains better detection results
with fewer false-positive bounding boxes and fewer missed
heavily occluded and distant objects than Voxel R-CNN. We
also compared the detection results of SECOND and GLENet-
S on the Waymo validation set in Fig. 12, where it can be
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Fig. 11: Visual comparison of the results by GLENet-VR and Voxel R-CNN on the KITTI dataset. The ground-truth, true
positive and false positive bounding boxes are visualized in red, green and yellow, respectively, on both the point cloud and
image. Best viewed in color.

seen that compared with SECOND (Yan et al., 2018b), our
GLENet-S has fewer false predictions and achieves more
accurate localization.

6 Discussion

In this section, we further list a few potential technical lim-
itations of the current learning framework and promising
directions for extensions.

(1) Complexity and Computational Cost. Despite GLENet
providing reliable label uncertainty as supervision signals
for downstream probabilistic detectors, estimating the
label uncertainty itself brings additional computational
costs and makes the overall training process more com-
plex. Particularly, considering the risk of over-fitting, we
followed k-fold cross-sampling to train GLENet on 9 sub-
sets and then made predictions on the remaining subset
at each time.

(2) Incomplete input information. In GLENet, we only take
the partial point cloud of individual objects as input,
so only the learned geometric information is used to
estimate potential bounding boxes. However, the context
cues like free space and location of surrounding objects are
neglected, which are also meaningful to determining the
bounding boxes. Therefore, the estimated label uncertainty
may deviate from the true distribution. But it is not feasible
to take all points in the scene as input, as the key point of

GLENet lies in learning the latent distribution of bounding
boxes from samples with similar point cloud shapes and
involving the whole point cloud in the scene distinguishes
those objects with similar shapes. Incorporating such
information without compromising the core benefits of
GLENet remains a challenge.

(3) Robustness to Annotation Errors. While GLENet aims
to address the inherent ambiguity in ground-truth anno-
tations, it may not be entirely immune to the effects of
significant annotation errors. If the training data contains
substantial annotation errors, the model may inadvertently
learn and propagate these errors, leading to an inaccurate
estimation of label uncertainty. For example, if an object
with a high-quality point cloud is annotated with a wrong
box and further leads to inconsistent predictions and larger
label uncertainty, those objects with similar shapes will
suffer from unreasonable label uncertainty supervision
signals. The robustness and reliability of the proposed
method under such scenarios could be a limitation.

(4) Limited Evaluation Metrics and Scenarios. Evaluating the
quality and diversity of generated data in generative tasks
like GLENet is challenging. Although the proposed 𝐿𝑁𝐿𝐿
assesses the closeness between the prediction of GLENet
and ground-truth annotation bounding boxes, evaluating
the quality and diversity of generated data remains an
ongoing research problem. On the other hand, while your
method demonstrates performance gains on benchmark
datasets such as KITTI and Waymo, it is important to
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(a) SECOND (b) GLENet-S (Ours)

Fig. 12: Visual comparison of the results by SECOND and GLENet-S on the Waymo val set. The ground-truth, true positive
and false positive bounding boxes are visualized in red, green and yellow, respectively. Best viewed in color and zoom in for
more details. Additional NMS with a higher IoU threshold is conducted to eliminate overlapped bounding boxes for better
visualization.

consider the generalizability of your approach across
various environmental conditions, object classes, and
sensor modalities. The ability of GLENet to generalize
to a broader range of datasets and scenarios could be a
limitation.

(5) Possible Extensions. The idea of estimating the label
uncertainty by capturing the one-to-many relationship
between observed input and multiple plausible labels with
latent variables could be extended to other subjective tasks
in computer vision where labels are not deterministic.
One promising task is 3D object tracking, where different
opinions of annotators on the boundaries of objects lead
to non-deterministic labels. Another example is image
quality assessment, where the goal is to evaluate the
quality of an image, often in the context of compression

or transmission. The quality of an image is subjective and
can vary depending on the perception and expectations
of the viewer.

7 Conclusion

We presented a general and unified deep learning-based
paradigm for modeling 3D object-level label uncertainty.
Technically, we proposed GLENet, adapted from the learning
framework of CVAE, to capture one-to-many relationships
between incomplete point cloud objects and potentially plausi-
ble bounding boxes. As a plug-and-play component, GLENet
can generate reliable label uncertainty statistics that can be
conveniently integrated into various 3D detection pipelines
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to build powerful probabilistic detectors. We verified the
effectiveness and universality of our method by incorporating
the proposed GLENet into several existing deep 3D object
detectors, which demonstrated consistent improvement and
produced state-of-the-art performance on both KITTI and
Waymo datasets.

Data Availability Statements

The Waymo Open Dataset (Sun et al., 2020) and KITTI (Geiger
et al., 2012) used in this manuscript are deposited in publicly
available repositories respectively: https://waymo.com/
open/data/perception and http://www.cvlibs.net/
datasets/kitti.
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