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Abstract—This paper explores the task-oriented compact rep-
resentation of 3D point clouds, which should maintain the
performance of subsequent applications applied to such com-
pact point clouds as much as possible. Designing from the
perspective of matrix optimization, we propose MOPS-Net, a
novel deep learning-based method that is distinguishable from
existing approaches due to its interpretability and flexibility. The
matrix optimization problem is challenging due to the discrete
and combinatorial nature of the sampling matrix. Therefore, we
tackle the challenges by relaxing the binary constraint of the
sampling matrix and formulating a constrained and differentiable
optimization problem. We then design a deep neural network to
mimic the matrix optimization by exploring both the local and
global structures of the input data. MOPS-Net can be end-to-end
trained with a task network and is permutation-invariant, making
it robust to the input. We also extend MOPS-Net such that a
single network after one-time training is capable of handling
arbitrary downsampling ratios. Extensive experimental results
show that MOPS-Net can achieve favorable performance against
state-of-the-art deep learning-based methods over various tasks,
including classification, reconstruction, and registration. Besides,
we validate the robustness of MOPS-Net on noisy data.

Index Terms—Point cloud, Sampling, Optimization, Deep
learning, Classification, Reconstruction, Registration.

I. INTRODUCTION

W ITH recent advances in three-dimensional (3D) sensing
technology (e.g., LiDAR scanning devices), 3D point

clouds can be easily obtained. Compared with other 3D
representations such as multi-view images, voxel grids and
polygonal meshes, point clouds are a raw 3D representation,
containing only 3D samples which are located on the scanned
surface. Powered by deep learning techniques, the performance
of many point cloud applications, such as classification, seg-
mentation and reconstruction, has been improved significantly
in recent years. However, processing large-scale and/or dense
3D point clouds is still challenging due to the high cost of
computation, storage, and communication load.

3D point clouds in a compact representation can help reduce
information redundancy, thereby improving the speed of the
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Fig. 1. Illustrations of task-independent and task-oriented point cloud down-
sampling using classification as an example. (a) A deep learning-based point
cloud classifier is trained on dense point clouds. (b) Traditional downsampling
methods, such as FPS, generate sparse point clouds without considering the
nature of the task, hereby may compromise the performance of the classifier
in (a) significantly. (c) The classification-oriented downsampling method
produces sparse point clouds that maintain the performance of the classifier
in (a). To develop such classification-oriented downsampling, we take both
the geometry of the input shape and the performance of the classifier into
account.

downstream applications and saving storage space and trans-
mission bandwidth. To compactly represent 3D point cloud,
existing works in the field of point cloud compression try to
establish the point relation via a tree-based structure [1], [2],
[3], [4], a projection to 2D images [5], [6], and compression of
the intermediate feature code [7], [8], [9]. These compression
works aim to reduce the data volume of an input 3D point
cloud with introducing as little quality degradation as possible.

Besides, downsampling is also a popular and effective
technique to achieve the compact representation of 3D point
clouds. In contrast to point cloud compression, the compact
representation created by downsampling is still in the 3D point
cloud space. The traditional downsampling approaches such as
farthest point sampling (FPS) [10] and Poisson disk sampling
(PDS) [11] iteratively generate uniformly distributed samples
on the input shape, and thus they can preserve the geometry
well. Such sampling methods, however, focus on reducing
the geometry loss only and are completely independent of
the downstream applications. As a result, under a limited
sampling budget, traditional approaches cannot adaptively
preserve the most informative points according to specific task
properties, which causes sub-optimal downsampling efficacy
and degraded task performance.

An alternative way for compactly representing 3D point
clouds is to generate samples that optimize the performance
of a particular task, i.e., the resulting sparse point clouds
will maintain the task performance as much as possible. Due
to the task-centric nature, we call it task-oriented compact
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representation. Moreover, an effective downsampling method
should allow the user to freely specify the downsampling ratio
to balance the task performance and computation efficiency.
As the deep learning technologies have proven effective in
point cloud classification [12], [13], [14], [15], [16], seg-
mentation [17], [18], [19], [20], [21], registration [22], [23],
[24], [25] and compression [26], [27], [28], it is highly
desired to combine downsampling methods with the deep
neural networks. However, extending the existing network
architectures to point cloud downsampling is non-trivial since
the point selection process is discrete and non-differentiable.
Recently, Dovrat et. al. pioneered a deep learning approach
called S-Net [29], which takes downsampling as a generative
task and uses the extracted global features to generate samples.
S-Net is flexible in that it can be combined with task-specific
networks to produce an end-to-end network trained by a joint
loss. Thanks to its task-oriented nature, S-Net outperforms FPS
in various applications. Hereafter, Lang et al. [30] improved
S-Net by introducing an additional projection module to
encourage the generated points closer to original point clouds,
learning SampleNet. However, as S-Net and SampleNet solely
rely on global features in their generative processes, they
can not utilize the point-wise high-dimensional local features,
which limits the quality of synthesized points.

In this paper, we propose a novel deep learning approach,
namely MOPS-Net, to obtain the task-oriented compact rep-
resentation of 3D point clouds. In contrast to the existing
methods, we propose MOPS-Net from the matrix optimization
perspective. Viewing downsampling as a selection process, we
first formulate a discrete and combinatorial optimization prob-
lem. As it is difficult to solve the 0-1 integer program directly,
we relax the integer constraint for each variable, in which
a constrained and differentiable matrix optimization problem
with an implicit objective function is formulated. We then
design a deep neural network architecture to mimic the matrix
optimization problem by exploring both the local and global
structures of the input data. With a task network, MOPS-
Net can be end-to-end trained. MOPS-Net is permutation-
invariant, making it robust to input data. Furthermore, we
extend our method to handle arbitrary downsampling ratios
by constraining the invoking columns of the soft sampling
matrix. Our extension allows a single network, trained only
once, to be utilized for downsampling tasks involving varying
ratios. Extensive results show that MOPS-Net achieves much
better performance than state-of-the-art deep learning-based
methods and traditional methods in various tasks, including
point cloud classification, reconstruction, and registration. We
also provide comprehensive ablation studies and analysis on
model robustness and time efficiency.

The main contributions of this paper are summarized as
follows:
• we explicitly formulate the problem of the task-oriented

compact representation of 3D point clouds from the
matrix optimization perspective;

• we propose an interpretable deep learning-based method
named MOPS-Net, which mimics the above formulation,
making it different from the existing deep learning-based
methods that directly regress the downsampled point sets.

• we extend MOPS-Net and propose FMOPS-Net, which is
capable of handling arbitrary downsampling ratios after
only one-time training; and

• we propose a new compact deep-learning framework for
large-scale point cloud reconstruction, which enables the
validation of the scalability of MOPS-Net on relatively
large-scale point clouds; and

• we conduct various experiments and comprehensive abla-
tion studies to demonstrate the advantages of our methods
over state-of-the-art methods.

The rest of this paper is organized as follows. Section
II briefly reviews point cloud compression works, traditional
point cloud downsampling methods and recent deep learning
techniques for 3D point clouds. In Section III, we formulate
the problem of the task-oriented compact representation as a
constrained and differentiable optimization problem, followed
by an end-to-end deep neural network that mimics the resulting
optimization in Section IV. Section V presents extensive
experimental results, comparisons with the state-of-the-art, as
well as comprehensive robustness tests and ablation studies.
Section VI finally concludes this paper.

II. RELATED WORK

A. Point Cloud Compression

One kind of traditional approaches attempts to reorganize
unstructured 3D point clouds into a memory-efficient data
structure such as Octree [1], [2], [3], [4] and region-wise
clustering [31]. Another kind of popular traditional point cloud
compression methods is based on 3D-to-2D mapping [5], [6].
Specifically, they project 3D objects to multiple 2D images
from various viewpoints and then adopt the mature image
and video codecs to compress the resulting 2D images. Jia et
al. [32] further improved the traditional 3D-to-2D projection
method by introducing a CNN to compress the 2D occupancy
map. We also refer the reader to [6] [33] for the comprehensive
review of 3D point cloud compression. Inspired by the success
of the deep learning-based image compression [34], [35], some
deep learning-based point cloud compression frameworks have
recently emerged [7], [8], [9], [36], [37]. Basically, these meth-
ods construct auto-encoder structures that allow the encoders
to convert an input point cloud to a feature code. The extracted
feature is further quantified and entropy coded into a bitstream.

B. Traditional Downsampling Methods

The traditional methods, such as farthest point sampling
(FPS) and Poisson disk sampling (PDS), generate samples in
an iterative manner. Starting from a random sample, FPS re-
peatedly places the next sample point in the center of the least-
sampled area. Using efficient geodesic distance computation
tools (such as the fast marching method [38]), FPS generates
m samples on a n-vertex mesh in

∑m
i=1 f(

n
i ) = O(n log n)

time, where f(x) = O(x log x). FPS is easy to implement and
becomes popular in designing neural networks that aggregate
local features [12], [14], [39]. Poisson disk sampling produces
samples that are tightly packed, but no closer to each other than
a specified minimum distance, resulting in a more uniform
distribution than FPS. There are efficient implementations of
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Fig. 2. MOPS-Net is a matrix optimization-driven deep learning method for task-oriented 3D point cloud downsampling. It first extracts high-dimensional
features, which contain both global and local geometric information, from point coordinates (Sec. IV-B). It then utilizes the features to learn a differentiable
sampling matrix, which is multiplied by the input dense point cloud to obtain the sampled points (Sec IV-C). Finally, it feeds the downsampled sparse points
to a task network. The whole network is trained by jointly optimizing the task loss and the subset loss (Sec. IV-E).

PDS with linear time complexity in Euclidean spaces [40],
[41]. However, it is expensive to generate Poisson disk samples
on curved surfaces due to frequent computation of geodesic
distances [11]. Voxelization is also a commonly used technique
to downsample or resample point clouds, which quantizes
point clouds into regular voxels in 3D space with predefined
resolution. Compared with FPS and PDS, voxelization is more
efficient due to its non-iterative manner. However, voxelization
often suffers from quantization error and cannot yield results
that are the exact subsets of the input. Moreover, the traditional
approaches focus only on preserving the geometry of the input
shape and they do not consider the downstream tasks at all.
Despite their simple implementation, a traditional downsam-
pling strategy, such as FPS, has been widely applied to various
point cloud processing methods, including deep learning-based
methods [12], [42], [43].

C. Deep Learning for 3D Point Clouds

Due to the irregular and unordered nature of point clouds,
the widely used convolutional neural networks (CNNs) on
2D images/videos [44], [45], [46] cannot be applied directly.
PointNet, proposed by Qi et al. [13], maps a 3D point to a
high dimensional space by point-wise multi-layer perceptrons
(MLPs) and aggregates global features by a symmetric func-
tion, named max-pooling. As the first deep neural network that
works for 3D raw points without projecting or parameterizing
them to regular domains, PointNet quickly gained popularity
and was successfully used as the fundamental feature ex-
traction for point clouds. However, PointNet processes the
points individually and does not consider the spatial relation
among points. The follow-up works, such as PointNet++ [12],
DGCNN [16] and PointCNN [14], improve PointNet by taking
local geometry into account.

Inspired by the success of PointNet on classification, many
other point cloud applications were studied in recent years,
such as retrieval [47], [48], segmentation [17], [18], [19], [20],
[49], reconstruction [50], [51], [52], registration [53], [25],
[54], [55], [56], object detection [57], [58], [59], [60], [61]
and hand pose estimation [62], just name a few. Although
they have different problem settings, these networks can be
combined with the point cloud downsampling network and
jointly trained. In this paper, we evaluate the performance
of the proposed downsampling framework on classification,
registration, and reconstruction.

Opposite to downsampling, point cloud upsampling [63],
[64], [65], [66] has also been investigated recently. Upsam-
pling can be treated as either a 3D version of image super-
resolution, or the inverse process of downsampling. Despite
the common word “sampling”, the two tasks are completely
different. Upsampling, as a generative task, requires informa-
tive feature expansion and can be trained by ground truth
dense point clouds. In contrast, point cloud downsampling
is close to feature selection, where a differentiable end-to-
end framework should be carefully designed. Moreover, due
to a lack of ground truth, the downsampled points should be
learned to optimize a specific task loss.

D. Deep Learning-based Point Cloud Downsampling

It is an emerging topic, on which there are only a few
works. Nezhadary et al. [67] proposed to use critical points
invoked in max-pooling as sampled points. In order to improve
classification accuracy, Yang [68] adopted a Gumbel softmax
layer to integrate high-level features. Recently, Dovrat et al.
[29] proposed a data-driven point cloud downsampling frame-
work named S-Net. After the point-wise feature extraction by
PointNet, a global feature was obtained by the max-pooling
operation. Then 3D coordinates of fewer points were regressed
by fully-connected layers. Followed by a pre-trained task
network, S-Net can be trained end-to-end. Lang et al. [30]
proposed SampleNet, which improves S-Net by introducing
a soft projection module that adopts an annealing schedule
to encourage generated points to be close to original points.
However, both S-Net and SampleNet regress coordinates from
global features directly and do not consider spatial correlation
among sampled points, which plays an important role in
downsampling, since spatially close points have the tendency
to be represented by the same downsampled point. Recently,
Liu et al. [69] proposed APSNet, which can adaptively adjust
the resolution of point clouds for the purpose of action
recognition. However, APSNet performs downsampling via
FPS and requires four pre-defined levels of resolution. In
sharp contrast to current deep learning-based downsampling
strategies, we propose a novel framework by exploring the
local geometry of the input data from a perspective of matrix
optimization, making it applicable to diverse downstream
applications and granting it the flexibility to accommodate
arbitrary downsampling ratios.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2023.3270315

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on July 03,2023 at 03:14:58 UTC from IEEE Xplore.  Restrictions apply. 



4

III. PROBLEM FORMULATION

In this section, we explicitly formulate the problem of the
task-oriented compact representation of 3D point clouds from
the matrix optimization perspective.

Denote by P = {pi ∈ R3}ni=1 a dense point cloud with n
points. pi = {xi, yi, zi} is the 3D Cartesian coordinates. Let
Q = {qi ∈ R3}mi=1 be the downsampled sparse point cloud
with m (< n) points, which is a subset of P , i.e., Q ⊂ P .

As aforementioned, we consider a task-oriented sampling
process. That is, given P , we compute the downsampled
point cloud Q that maintains comparable or at least does
not compromise the performance of the subsequent tasks too
much, e.g., classification, etc. Such a compact representation
is beneficial to computation, storage, and transmission.

Mathematically speaking, the problem can be formulated as

min
Q

Ltask(Q) s.t. Q ⊂ P, (1)

where Ltask(·) indicates the task-tailored loss, whose explicit
form will be discussed in Section IV-E. We rewrite Eq. (1) in
a more explicit manner

min
S
Ltask(Q)

s.t. Q = STP, 1T
nS = 1T

m, STS = Im, si,j ∈ {0, 1}, (2)

where P = [p1,p2, . . . ,pn]
T ∈ Rn×3 and Q =

[q1,q2, . . . ,qm]T ∈ Rm×3 are the matrix representations of
P and Q, respectively, constructed by stacking each point
as a column in an unodered manner1; si,j is the (i, j)-th
entry of S ∈ Rn×m; 1n = [1, . . . , 1]T ∈ Rn×1 is the
column vector with all elements equal to 1; and Im refers
to the identity matrix of size m × m. The constraints force
S to be an ideal sampling matrix, i.e., S only contains m
columns of a permutation matrix of size n×n. More precisely,
the orthogonal constraint is used to avoid repeated columns
(indicating that an identical point is selected multiple times)
in S.

The challenge for solving Eq. (2) comes from the discrete
and binary characteristics of matrix S. To tackle this chal-
lenge, we relax the binary constraints Eq. (2) in a soft and
continuous manner, i.e., the elements of S are continuous,
ranging between 0 and 1. The relaxed variables indicate the
probabilities of the corresponding points that will be sampled.
After this relaxation, the resulting points in Q may not be
the subset of P . To mitigate this effect for a meaningful
sampling process, we further introduce a metric Lsubset(·, ·) to
quantitatively measure the distance between two point clouds,
and minimizing Lsubset(P,Q) will promote Q to be a subset
of P as much as possible. We will explain the explicit form
of Lsubset(·, ·) in Section IV-E.

We finally express the relaxed and continuous optimization
problem for task-oriented point cloud downsampling as

min
S
Ltask(Q) + αLsubset(P,Q)

s.t. Q = STP, S ≥ 0, 1T
nS = 1T

m, ‖STS− Im‖F < ε, (3)

1Note P (resp. Q) and P (resp. Q) stand for the same data but in different
forms, and there is no specific requirement on the order when stacking the
points. The notations are used interchangeably in the paper.

where ‖ · ‖F is the Frobenius norm of a matrix, ε > 0 is a
threshold, and α > 0 is the penalty parameter to balance the
two terms.

Remarks. Although the optimization of the matrix S in
deep learning frameworks requires that it be non-binary, we
introduce a temperature annealing mechanism to enforce it
to be close to a binary matrix, as demonstrated in Section
IV-C. However, the non-binary matrix S still generates a point
cloud that is not necessarily a subset of the input Q 6⊂ P . This
can be explained from the perspective of geometry processing.
When presenting an object using two point clouds of different
resolutions, the one with fewer points is generally not fully
overlapping with the larger one since we have to re-distribute
the points in order to preserve the geometry. Although Q 6⊂ P ,
the objective function penalizes the points that are away from
the input shape. Therefore, the points of Q are either on or
close to the underlying object surface. If the subsequent task
requires Q ⊂ P , we can assign each point of Q the closest
point in the input data. In Section V, we will quantitatively
analyze the effect of these post-processing operations.

IV. PROPOSED METHOD

This section presents MOPS-Net, a novel end-to-end deep
neural network that mimics the formulated optimization prob-
lem in Eq. (3) for the task-oriented compact representation of
3D point clouds.

A. Overview

Figure 2 illustrates the flowchart of MOPS-Net. Given a
point cloud P and a pre-trained task network, MOPS-Net uses
a feature extraction module to encode each point with high
dimensional and informative features by exploring both the
local and the global structures of P (Section IV-B). Based
on the high dimensional features, MOPS-Net estimates a
differentiable sampling matrix S under the guidance of the
constraints in Eq. (3). Multiplying the learned sampling matrix
to original dense point clouds, we can obtain the sampled
points efficiently (Section IV-D). Together with a fixed task
network, MOPS-Net can be end-to-end trained with a joint loss
(Section IV-E). Such a joint loss simultaneously penalizes the
degradation of task performance and regularizes the distribu-
tion of sampled points, which is consistent with the objective
function in Eq. (3). Note that constraints S ≥ 0 and 1T

nS = 1T
m

in Eq. (3) are naturally guaranteed by the annealing softmax
operation for generating the sampling matrix in Section IV-C.
For the constraint ‖STS − Im‖F < ε, we do not optimize
it directly because of the quadratic computation and memory
cost. However, our design could implicitly promote STS to be
an identity matrix. We refer readers to the following Figure 4
and Table I for the experimental verification on the learned
sampling matrix S.

We show that MOPS-Net is flexible and it can be extended
so that a single network with one-time training is capable of
handling arbitrary downsampling ratio (Section IV-F). Last
but not the least, we prove that MOPS-Net is permutation-
invariant, which is a highly desired feature for point cloud
applications.
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Fig. 3. The flowchart of differentiable sampling module.

Remarks. The proposed MOPS-Net is different from the ex-
isting deep learning framework S-Net [29] and SampleNet [30]
although they all apply a generative process to obtain down-
sampled point sets. S-Net and SampleNet formulate the sam-
pling process as a point-generation problem from global fea-
tures, while MOPS-Net is designed from a matrix optimization
perspective to utilize the informative local (or point-wise)
features to generate a relaxed sampling matrix. Experimental
results demonstrate the advantages of MOPS-Net over S-Net
and SampleNet on point cloud classification, reconstruction,
and registration. See Section V.

B. Feature Extraction

Given a point cloud P = {pi ∈ R3}ni=1, we extract
d-dimensional point-wise features, denoted by F = {fi ∈
Rd}ni=1. Let F = [f1, . . . , fn]

T ∈ Rn×d denote the matrix form
of pointwise features. We utilize PointNet [13], a basic feature
extraction backbone over 3D point clouds. More specifically,
as Figure 2 illustrated, we extract pointwise local features via
a shared MLP and concatenate them with the global feature
which is derived by applying the max-pooling operation.

It is also worth noting that other advanced feature extraction
techniques, such as PointNet++ [12], DGCNN [16], and KP-
Conv [70], could be adopted to further boost the performance
of our method. , Here we adopt the basic PointNet for fair
comparisons with S-Net and SampleNet.

C. Learning Differentiable Sampling Matrix

As analyzed in Section III, an ideal sampling matrix, which
is a submatrix of a permutation matrix, is discrete and non-
differentiable, making it challenging to optimize. Accordingly,
such a non-differentiable sampling matrix cannot be imple-
mented in a deep neural network. Fortunately, the relaxation
on the sampling matrix in Eq. (3) leads to a continuous matrix
with additional constraints, which approximates the ideal one
and allows us to design a deep neural network.

According to Eq. (3), it is known that the optimized
sampling matrix S will depend on P in a non-linear fashion.
From the perspective of geometry processing, downsampling
highly depends on the geometric structure of the input data. As
the high-dimensional embeddings fi produced by the feature
extraction module already encode such a structure locally and
globally, we use them to predict a preliminary sampling matrix
S ∈ Rn×m row by row via an MLP ρ(·), i.e.,

si = ρ(fi), (4)

where si ∈ R1×m is the i-th row of S. In our experiments,
ρ(·) is realized by a 4-layer MLP of size [512, 256, 128, m].

TABLE I
STATISTIC OF THE PERCENTAGE OF NON-ZERO ELEMENTS IN LEARNED

SAMPLING MATRIX S (n = 1024). r IS THE THRESHOLD.

r m = 32 m = 64 m = 128
0.01 0.48% 0.36% 0.33%

To satisfy the constraints on the sampling matrix in Eq. (3),
we further apply the softmax with temperature annealing
operation on each element sij of S:

sij =
esij/τ∑n
i=1 e

sij/τ
, (5)

where sij and is the (i, j)-th entry of the final sampling matrix
S, and the value of the temperature τ gradually decreases
from 1 to τmin during training, and it is fixed to τmin during
inference. Such an operation ensures sij to be non-negative
and encourages each column of S to be dominated by a single
element, especially when τ is small. We experimentally found
that such an operation is able to realize the constraints in
Eq. (3) well. As visualized in Figure 4, the learned sampling
matrix S is extremely sparse and close to a sample matrix.
Besides, STS is also close to an identity matrix, although we
do not explicitly minimize this constraint.

(a) (b)
Fig. 4. Visualization of (a) learned sampling matrix S and (b) STS for
m = 64. The two subfigures share the same color bar.

D. Efficient Regression of the Sampled Set

Having obtained the sampling matrix S, we can naturally
deduce the corresponding downsampled point set Q by

Q = STP. (6)

Analytically, the downsampling procedure described in
Eq. (6) requires explicitly storing the sampling matrix S ∈
Rn×m and performing dot-product with P in O(nm) time
complexity, which seems to be a major computational bot-
tleneck faced with large-scale point clouds. Fortunately, ben-
efiting from the structural sparsity of S, we can perform
the matrix multiplication operation in a much more efficient
manner during inference.

More specifically, driven by the temperature annealing op-
eration in Eq. (5), the learned sampling matrix S highly ap-
proximates an ideal sampling matrix, i.e., a column-truncated
binary permutation matrix with only m non-zero entries, and
thus most entries of S are extremely small (see Figure 4) and
make negligible contributions to the actual subset selection.
In practice, we design a deterministic matrix simplification
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rule by setting all entries of S smaller than an appropriate
threshold to zero, after which we can expect that the ratio of
non-zero entries should be as small as 1

n . Particularly, with the
threshold set to 0.01 in our implementation, we counted the
percentage of non-zero elements in S. As listed in Table I,
we can observe that the number of non-zero elements of
the quantized S is about cm, where c is around 4. In our
implementation, we adopt the Coordinate format (COO) [71]
to store the highly sparse matrix S, which has O(cm) memory
cost, where c� n. Therefore, performing dot-product on only
non-zero elements has time complexity O(cm).

As relaxation cannot guarantee Q ⊂ P , we can adopt an
optional post-matching operation that maps each point of Q
to its nearest point in P to obtain the downsampled subset.
If the number of points contained in the matched point set is
smaller than the specified value, we adopt FPS to complete
it, i.e., points with farthest distances to the matched point set
are iteratively selected from the original dense point clouds,
until the target number is achieved. In Section V, we will
demonstrate the performance of the three cases.

In addition to differentiability, our design of the sampling
matrix learning is also permutation-invariant. That is, the
sampling result is independent of the point order of the input
data. We refer readers to the Supplementary Material for the
proof.

E. Joint Training Loss

As analyzed in the objective function (3), two types of losses
are needed to train MOPS-Net, i.e., the task loss Ltask(·)
and the subset loss Lsubset(·, ·). Specifically, Ltask(·) aims
to promote the network to learn downsampled point clouds
that are able to maintain high performance for a specific task.
Let FT (·) be the network for a typical task, which was trained
with the original dense point cloud data, and we have

Ltask(Q) = LT (FT (Q), y∗), (7)

where y∗ is the corresponding ground-truth data for Q. Specif-
ically, y∗ will be the class label and the input point cloud when
the task is classification and reconstruction, respectively.

The subset loss Lsubset(·, ·) regularizes the network to learn
downsampled point clouds that are close to subsets of inputs,
which is expressed as

Lsubset(P,Q) =
1

m

∑
i=1,...,m

min
p∈P
||qi − p||22 (8)

Therefore, the total loss Ltotal(·, ·) for end-to-end training
of MOPS-Net is written as

Ltotal(P,Q) = Ltask(Q) + αLsubset(P,Q), (9)

where α > 0 balances the two terms. Figure 16 shows the
effect of the value of α on performance.

F. Flexible MOPS-Net for Arbitrary Ratios

In the previous sections, we construct MOPS-Net with a
predefined sample size m, and a different network has to be
trained for each m, which is tedious and unpractical for real-
world applications. To solve this issue, we extend MOPS-Net

and propose flexible MOPS-Net (FMOPS-Net), which is a
single network that can achieve 3D point cloud downsampling
with arbitrary sampling ratios after only one-time training.

Specifically, we consider learning a relatively large matrix
Ŝ ∈ Rn×mmax with the same network architecture as MOPS-
Net. Given an arbitrary sample size m ≤ mmax, we select the
m left-most columns of Ŝ to form the sampling matrix Sm ∈
Rn×m, producing a point cloud Qm with m points according
to Eq. (6). Such a manner is equivalent to indirectly sorting the
points of P according to their importance in a downsampled
point cloud. To enable flexibility, we train MOPS-Net by
randomly picking the downsampled number m ≤ mmax

and minimizing Ltotal(P,Qm) at each iteration. Note that
the computational complexity and the memory consumption
during the inference phase are identical to Section IV-D by
replacing m with mmax.

V. EXPERIMENTS

We validated the effectiveness of MOPS-Net and FMOPS-
Net on three typical tasks, i.e., point cloud classification,
reconstruction, and registration. The task networks and ex-
periment settings will be discussed in each section in detail.
We used three widely used traditional downsampling meth-
ods, i.e., random sampling (RS), voxelization (Voxel), and
farthest point sampling (FPS), as baselines. We also compared
with S-Net [29] and SampleNet [30], which are state-of-the-
art deep learning-based task-oriented downsampling methods.
Note that for S-Net, SampleNet, and MOPS-Net, a network
was trained for a downsampling size. For deep learning-based
methods, we examined the performance of three types of
downsampled sets, i.e., (1) Generated (G) sets: the point
sets are generated directly by deep learning-based methods;
(2) Matched (M) sets: the directly generated sets are post-
processed via the matching operation, making the point sets
be subsets of input ones; and (3) Completed (C) sets: the
matched sets are further completed via FPS if their numbers
of points are less than the specified value. In the following
visual results, we visualized the Generated (G), Matched
(M), and Completed (C) sets with blue, red, and orange
colors, respectively, to distinguish them.

A. Classification-oriented Downsampling

1) Classification of small-scale point clouds: Following
S-Net [29] and SampleNet [30], we used the pre-trained
PointNet vanilla [13] performing on ModelNet40 [72] as the
classification task network. Note that the pre-trained PointNet
vanilla trained on point clouds with 1024 points achieves
87.1% overall accuracy when classifying point clouds with
1024 points each to 40 categories. The task loss refers to
the cross entropy between the predicted and ground-truth
labels. During the training of our MOPS-Net, we optimized
the network with the Adam optimizer and set τmin = 0.1
and α = 30, and we initialized the learning rate to 5e−4 and
exponentially decreased it to 1e−5 within 250 epochs.

Quantitative comparisons. From Table II, we can observe
that task-oriented downsampling methods, including S-Net,
SampleNet, and MOPS-Net, achieve much better performance
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TABLE II
COMPARISONS OF THE CLASSIFICATION ACCURACY2BY DIFFERENT DOWNSAMPLING METHODS. THE LARGER, THE BETTER.

RS Voxel FPS S-Net [29] SampleNet [30] MOPS-Net FMOPS-Net
m G M C G M C G M C G M C

512 84.76 73.82 86.06 81.69 71.43 85.66 57.82 57.82 86.63 86.67 85.25 86.75 86.18 85.07 86.35
256 76.94 73.50 83.06 82.94 72.08 82.78 83.23 83.02 84.48 86.63 85.53 86.10 86.51 85.17 86.14
128 62.32 68.15 72.85 83.31 72.24 73.18 84.04 83.14 82.58 86.06 84.64 85.29 86.02 84.4 84.89
64 36.75 58.31 56.69 78.81 66.00 63.82 82.21 80.19 79.78 85.25 83.95 84.00 83.39 81.44 81.08
32 15.07 20.02 34.08 78.16 59.89 60.05 75.45 72.89 72.49 84.28 79.01 79.74 76.58 71.76 70.42
16 6.36 13.94 20.22 68.56 43.60 43.44 54.42 50.04 50.00 81.40 64.99 64.83 67.22 56.77 55.71
8 4.70 3.85 11.02 45.99 20.50 20.5 29.58 25.53 25.57 52.39 32.62 32.62 40.96 32.62 32.58

Fig. 5. Quantitative comparisons of classification by different downsampling
methods. Note that FMOPS-Net is applicable for arbitrary downsampled size.

Fig. 6. Visual comparisons of the generated point sets by the three deep
learning-based task-oriented downsampling methods with m = 64 over three
classes: (a) Bottles (b) Chairs (c) Lamps. Prominent regions within each class
are highlighted in red.

than task-independent methods, including random sampling
(RS), voxelization, and FPS. Note that the accuracy of S-Net
drops significantly from generated sets to the matched subsets
because the generative-based S-Net fails to obey the subset
constraint. By replacing the repeated points in matched subsets
by FPS points, the accuracy of completed subsets by S-Net can
be improved, especially for relatively large downsampled sizes
m =256 and 512.

SampleNet improves S-Net by projecting the generated sets
to nearest neighbors in original point clouds, and thus can
minimize the performance gap between the generated set and
matched subset. However, because of the additional restriction
for projection, the accuracy of generated points by SampleNet
is inferior to that by S-Net for relatively small downsampled
sizes m = 8, 16, 32. Moreover, SampleNet fails to generate
meaningful points for m = 512, and it mainly relies on
additional FPS postprocessing to obtain the completed set

Fig. 7. Visualization of sampled point clouds by different methods for
m = 256, 128, and 32. (a1) generated sets by S-Net; (a2) matched and
completed sets by S-Net; (b1) generated sets by SampleNet; (b2) matched
and completed sets by SampleNet; (c1) generated sets by MOPS-Net; (c2)
matched and completed sets by MOPS-Net.

which can result in comparable performance.
The proposed MOPS-Net consistently achieves the best per-

formance over all cases, which is credited to the real sampling
process-like modeling of MOPS-Net. Note that FMOPS-Net
is a flexible model that only requires one-time training to
handle arbitrary downsample ratios. Compared with MOPS-
Net, the FMOPS-Net variant additionally learns to sort input
points on the basis of relative importance in the downsampled
point cloud. Thus, FMOPS-Net is intrinsically faced with a
greater learning difficulty and suffers from slight degradation
of the accuracy of MOPS-Net. However, FMOPS-Net still
outperforms S-Net and SampleNet in almost all cases. Figure 5
further demonstrates the flexibility and advantage of FMOPS-
Net by showing the accuracy of more downsampling sizes.

We also emphasize that performance under larger down-
sampling ratios is a more persuasive measurement for point
cloud downsampling algorithms. Typically, for smaller down-
sampling ratios (i.e., larger m), the resulting point clouds
are still dense enough to involve sufficient information for
downstream processing. Under such circumstances, the impact
of the applied downsampling algorithm is weakened. By
contrast, under larger downsampling ratios (i.e., smaller m)
where only a small number of points can be preserved, the
impact of specific downsampling strategy is strengthened. In
other words, under a much more limited selection budget,
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the downsampling model must select the most informative
points more carefully, which turns out to be a more demanding
evaluation protocol. From this perspective, this phenomenon is
a stronger indicator of the superiority of MOPS-Net compared
with other competing methods.

Visual comparisons. Figure 6 visually illustrates sampled
point clouds (m = 64) by the three deep learning-based task-
oriented downsampling methods, i.e. S-Net, SampleNet, and
MOPS-Net, on three classes. From Figure 6, it can be seen
that the two generative-based S-Net and SampleNet tend to
generate points close to the centers of shapes and fail to
capture prominent regions. By contrast, our MOPS-Net can
successfully select points near the contours of shapes and
focus on prominent regions. Besides, for different point clouds
of a typical class, MOPS-Net focuses on selecting points
corresponding to identical semantics, e.g. the bottleneck of
bottles, the legs of chairs, and the lampshade of lamps. These
observations also explain why the downsampled point clouds
by MOPS-Net can be classified with higher accuracy than S-
Net and SampleNet.

Besides, Figure 7 visualizes the generated, matched, and
completed sets by S-Net, SampleNet, and MOPS-Net under
various m, where it can be seen that S-Net fails to directly
generate downsampled points close to the input points once the
shape is complex, and SampleNet tends to directly generate
points clustered around the shape center and omit the footrest
of the stool, which is assumed to be important for shape
identification. By contrast, our MOPS-Net can consistently
capture these discriminative regions for any downsampled size.

2) Classification of large-scale point clouds: To demon-
strate the ability of MOPS-Net in processing large-scale
point clouds, we further applied MOPS-Net for downsampling
point clouds with 10,000 and 100,000 points each. We first
pre-trained a PointNet-vanilla classifier on ModelNet40 with
100,000 points each model. The other settings, including the
optimized loss function, training epoch, and training strategies,
were identical to the experiments in Section V-A1. The pre-
trained classifier can achieve 90.11% overall accuracy. By
fixing the pre-trained classifier, we then trained MOPS-Net
for downsampling point clouds with 10,000 points each.
The experiment settings were kept identical to our previous
experiments on small-scale point clouds. As MOPS-Net is
built upon point-wise MLPs and the Softmax operator, which
are independent of the number of input points, we can directly
apply MOPS-Net trained on 10,000 points for downsampling
larger-scale point clouds with 100,000 points each.

Table III lists the classification accuracy of matched sets
by MOPS-Net for downsampling 10,000 points and 100,000
points. The high classification accuracy demonstrates the
ability of the proposed MOPS-Net on downsampling large-
scale point clouds. In particular, MOPS-Net trained on point
clouds with 10,000 points each can be successfully extended

2Note that in the original papers, S-Net and SampleNet adopt the pre-trained
PointNet with the T-Net structure whose classification accuracy achieves
89.2%. As aforementioned, in this paper we utilize PointNet without the T-Net
structure as the classifier to enable the application on large-scale point cloud
data. For a fair comparison, we apply this classifier to all compared methods.
Thus, the results of S-Net and SampleNet in this paper are slightly different
from those of the original papers [29] [30].

(a) (b) (c)

Fig. 8. Quantitative comparisons of the distortion of reconstructed dense point
clouds from the corresponding downsampled ones by different downsampling
methods. Reconstructed CD (first row) and EMD (second row) from (a)
generated, (b) matched, and (c) completed sets.

to downsample larger-scale point clouds with 100,000 points
each, without any modification or fine-tuning, which also
demonstrates its flexibility.

B. Reconstruction-oriented Downsampling

1) Reconstruction of small-scale point clouds: In this sce-
nario, we followed the settings of S-Net and SampleNet to
evaluate our method. The task network FT (·) was achieved by
a pre-trained MLP-based reconstruction network[50], where
a 3-layer MLP of size [256, 256, 1024 × 3] is utilized
to reconstruct point clouds with 1024 points from a 128-
dimensional global feature. We obtained the 128-dimensional
global features of downsampled point clouds by applying max-
pooling on the pointwise features extracted by a 5-layer MLP
of size [64, 128, 128, 256, 128]. A single class of ShapeNet-
Core [73] was used for training and testing. The task loss
was set as the combination of the Chamfer distance (CD) and
earth-mover distance (EMD). During training of our MOPS-
Net, we set τmin = 0.5, α = 0.2 and initialized the learning
rate to 5e−4 and exponentially decreased it to 1e−5 within
250 epochs. We quantitatively measured the reconstruction
performance of different downsampling methods using the
normalized reconstruction error (NRE) for CD and EMD,
which are defined as

NRECD(Q,P) =
CD(P,FT (Q))
CD(P,FT (P))

. (10)

NREEMD(Q,P) =
EMD(P,FT (Q))
EMD(P,FT (P))

, (11)

where CD(·) and EMD(·) compute the CD and EMD, respec-
tively. The values of NRECD and NREEMD are lower bounded
by 1, and the smaller, the better.

Quantitative comparisons. Figures 8(a) and (b) show the
NRECD and NREEMD values of the reconstructed point clouds
from generated and matched sets by different donwsampling
methods under various downsampling sizes, where it can
be seen that except the extremely small downsampled size
(m = 8 and 16), our MOPS-Net and FMOPS-Net produce
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TABLE III
COMPARISONS OF CLASSIFICATION ACCURACY FOR DOWNSAMPLING LARGE-SCALE POINT CLOUDS. THE LARGER, THE BETTER.

n = 10, 000 n = 100, 000
m RS FPS S-Net [29] SampleNet [30] MOPS-Net RS FPS S-Net [29] SampleNet [30] MOPS-Net

1024 84.97 88.65 73.18 81.89 90.24 84.93 88.98 72.61 81.89 89.79
512 77.23 85.69 72.45 78.69 90.00 76.86 85.86 72.12 78.32 89.18
256 65.84 79.67 63.09 84.68 87.40 64.83 79.78 63.41 84.85 89.10

TABLE IV
QUANTITATIVE COMPARISONS OF DIFFERENT RECONSTRUCTION FRAMEWORKS. THE SMALLER, THE BETTER. MODEL SIZES WERE MEASURED UNDER

THE SAME PARAMETER PRECISION.
M-FoldingNet

points metric MLP-based FoldingNet [74] M = 4 M = 8 M = 16 M = 32 M = 64 M = 128
1024 CD 13.81 18.48 11.84 12.69 13.46 13.34 13.70 16.46

EMD 154.26 359.78 175.07 209.13 210.69 210.69 198.66 222.89
Model Size 4.1MB 4.7 MB 3.1MB 2.9 MB 2.8MB 2.8MB 2.8MB 2.8MB

10000 CD NA 1.25 0.84 0.58 0.49 0.42 0.36 0.36
EMD NA 18.8 18.3 11.27 7.31 4.86 2.56 2.70

Model Size NA 12.0MB 5.4 MB 4.4MB 3.9 MB 3.6MB 3.5MB 3.5MB

Fig. 9. Visual comparisons of downsampled point clouds (1st and 3rd rows)
and reconstructed point clouds (2nd and 4th rows) by different downsam-
pling methods with m = 32. (a) Original point clouds and corresponding
reconstructions. (b) Random sampling; (c) Voxelization; (d) FPS; (e) S-Net;
(f) SampleNet; (g) MOPS-Net.

much lower distortion than S-Net and SampleNet. For the
reconstruction from completed sets shown in Figure 8(c), S-
Net and SampleNet are even worse than FPS when m > 64.
The reason may be that FPS is able to produce uniformly
distributed downsampled points; however, the uniform distri-
bution cannot be guaranteed by S-Net and SampleNet as they
are generative methods. However, our MOPS-Net and FMOP-
Net consistently achieve the best and second-best performance
under all downsampled sizes, respectively, and FMOP-Net is
even comparable to MOPS-Net.

Visual comparisons. Figure 9 visually compares the re-
constructed dense point clouds from sparse ones obtained by
different downsampling methods, where it can be seen that
the reconstructed point clouds from our MOPS-Net are much
better than those from other downsampling methods and are
much closer to ground-truth ones. This advantage is credited
to that the downsampled points by our MOPS-Net can well
capture the contour and salient features of 3D shapes.

Fig. 10. Illustration of the differences between different frameworks for point
cloud reconstruction. (a) MLP-based; (b) FoldingNet [74]; (c) AtlasNet [75];
(d) Proposed M-FoldingNet. Note that the multiple folding operators of the
AtlasNet are independent. For FoldingNet, AtlasNet, and M-FoldingNet, the
number of reconstructed points depends on the dimensions of the 2D grids.

2) Reconstruction of large-scale point clouds: To demon-
strate the ability of our MOPS-Net on large-scale point clouds,
we also examined MOPS-Net on point clouds with 40,960
points each. Unfortunately, the MLP-based reconstruction
framework (see Figure 10(a)) employed in Section V-B1
cannot well adapt to large-scale point cloud reconstruction
because the network size is linearly proportional to the number
of output points. To this end, we also propose a new framework
for reconstructing large-scale point clouds, whose network size
is independent of the output point number.

The proposed framework for large-scale point cloud recon-
struction, namely Multi-FoldingNet (M-FoldingNet), is moti-
vated by FoldingNet [74] shown in Figure 10(b). As illustrated
in Figure 10(d), instead of concatenating the global feature to
the 2D coordinates of a single regular grid, we first segment
such a global feature into a set of M local features with a
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Fig. 11. Visual comparisons of the reconstructed large-scale point clouds via
different reconstruction frameworks. (a) Original point cloud with 10, 000
points; Reconstructed by (b) FoldingNet; (c) M-FoldingNet (M = 4); (d)
M-FoldingNet (M = 8); (e) M-FoldingNet (M = 16); (f) M-FoldingNet
(M = 64).

smaller and equal feature dimension, and it is expected that
each local feature encodes the high-level semantic information
of a local patch on a point cloud. We then concatenate each
local feature to the coordinates of a 2D regular grid separately,
which are fed into a shared folding operator. Note that the
number of output points can be varied by adjusting the di-
mensions of the 2D regular grids. Compared with FoldingNet,
which can be thought of as a special case of M-FoldingNet
with M = 1, M-FoldingNet with fewer network parameters
can allow the folding operator to focus on local regions
which are easier to be reconstructed. Although AtlasNet [75]
illustrated in Figure 10(c) also realizes reconstruction in a
local manner, it adopts multiple independent folding operators,
leading to the significant increase of network parameters,
compared with FoldingNet.

We first evaluated and compared the proposed M-
FoldingNet with other reconstruction frameworks on both
small-scale point clouds (1024 points) and large-scale point
clouds (10,000 points each)3. The settings, including the
dataset, the generation of codewords/global features, and the
task loss, were kept identical to the MLP-based reconstruction
framework in Section V-B1. For fair comparisons, we used
an identical codeword dimension for all reconstruction frame-
works, i.e., the codeword dimension equals to d = 128 (resp.
d = 512) for reconstructing point clouds with n = 1024 (resp.
n = 10, 000) points. As listed in Table IV, we can observe that
the proposed M-FoldingNet can achieve better performance
than FoldingNet. Specifically, M-FoldingNet with M = 4
can achieve the best performance on the reconstruction of
small-scale point clouds. The reconstruction quality decreases
with M increasing because the segmented local features have
a limited dimension to fully embed local part information.
As expected, more pieces of local features are needed to
achieve the best reconstruction performance. Besides, our M-
FoldingNet is more compact than FoldingNet and MLP-based.
Figure 11 visually compares the reconstructed point clouds by
M-FlodingNet and FoldingNet, which also demonstrates the
superiority of the proposed reconstruction framework

We evaluated the performance of MOPS-Net for downsam-
pling real scanned data with 40,960 points each [76], where
the pre-trained M-FoldingNet (M = 128 and d = 2048 (or

3Here we used point clouds with 10,000 points each to enable the
application of the MLP-based framework.

TABLE V
QUANTITATIVE COMPARISONS OF THE DISTORTION OF RECONSTRUCTED

POINT CLOUDS FROM DOWNSAMPLED SPARSE POINT CLOUDS BY
DIFFERENT METHODS. THE ORIGINAL POINT CLOUDS CONSIST OF 40,960

POINTS EACH. THE SMALLER, THE BETTER.

NRECD NREEMD
m RS FPS MOPS RS FPS MOPS

4096 1.37 1.33 1.06 3.93 3.23 1.57
1024 4.00 2.53 1.35 12.10 8.97 3.05
256 26.77 7.24 2.71 45.53 19.13 7.40

d′ = 16)) was used as the task network. The settings of
MOPS-Net were the same as those in Section V-B1. Table V
quantitatively compares the distortion of reconstructed point
clouds from the downsampled sparse point clouds by random
sampling, FPS, and MOPS-Net 4. From Table V, we can see
that the NRECD and NREEMD values of the reconstruction
from the downsampled points by MOPS-Net are much smaller
than those of the reconstruction from downsampled points by
RS and FPS under all cases, which demonstrates the ability
of MOPS-Net in handling large-scale point clouds. Besides,
in Figure 12, we visualized the reconstructed dense point
clouds from downsampled m = 256 points via different
methods. The high quality of reconstructed 40,960 dense point
clouds from MOPS-Net demonstrates the superiority of the
proposed method for downsampling large-scale point clouds.
The memory and computational complexity for downsampling
large-scale point clouds can also be found in Section V-F. Last
but not least, for a very large-scale point cloud in practice, a
promising solution is to partition it to several regions with
smaller points each and then downsample the regions in
parallel or sequentially.

Fig. 12. Visual comparisons of reconstructed large-scale point clouds by
different downsampling methods with m = 256. (a) Original 40,960 real
scanned data. Reconstructed dense point clouds from 256 points sampled by
(b) Random sampling; (c) FPS; (d) MOPS-Net; (e) Reconstructed dense point
cloud by extracting the codeword from the original point cloud. Colors are
assigned by the pointwise depths for better visualization.

C. Registration-oriented Downsampling

Registration aims to predict rigid transformations between
two point clouds, including a rotation and a translation, which
can well align them. As an overdetermined problem, only a
few key points, which can well capture the shape information
of a point cloud, are usually extracted, and the registration

4Note that we did not provide the results of S-Net and SampleNet in this
experiment because it is difficult to tune the hyper-parameters contained in
the loss functions of S-Net and SampleNet for obtaining satisfied results due
to the large-scale point clouds. To ensure the correctness of our paper, we
omitted their results. Besides, in Section V-E, we quantitatively analyzed the
effect of the hyper-parameters contained in the loss function of SampleNet
on reconstruction performance.
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will be conducted on the key points rather than original
point clouds to save memory and computational complexity.
Thus, the registration accuracy also depends on the quality
of selected key points. In this section, we examined the
performance of MOPS-Net with registration as the subsequent
task.

We utilized point clouds with 1024 points each in Mod-
elNet40 as the original data. The paired data were generated
by applying random rotations and translations to training point
clouds. We adopted PCRNet [23] with one iteration as the task
network, whose loss function is the L2 difference between the
predicted quaternions and ground-truth ones. We quantitatively
evaluated different downsampling methods by using the mean
rotation error (MRE) between the predicted rotations and
ground-truth ones. Note that the MRE of PCRNet trained and
tested with original point clouds is 7.21. For MOPS-Net, we
set τmin = 0.1, α = 1 and initialized the learning rate to 1e−4

and exponentially decreased to 1e−5 within 250 epochs.
Quantitative and visual comparisons. Table VI lists MRE

values of different downsampling methods with the task net-
work fixed to the pre-trained PCRNet, where we can observe
that the proposed MOPS-Net can achieve the best performance
than the traditional methods, S-Net, and SampleNet for all
settings, and FMOPS-Net even achieves better performance
than MOPS-Net over the generated sets. Besides, S-Net suffers
from significant performance degradation once the generated
point sets are restricted to be subsets of original point clouds
(i.e. the matched sets). Figure 13 visually compares different
methods, where the advantage of our MOPS-Net is verified
again.

Fig. 13. Visual comparisons of registered point clouds by different downsam-
pling methods (m = 8). (a) Non-registered input pair; Registered results on
the key points extracted by (b) Random sampling; (c) Voxelization; (d) FPS;
(e) S-Net; (f) SampleNet; and (g) MOPS-Net.

Joint training. In all the above experiments for classifica-
tion, reconstruction, and registration, the task networks were
fixed to be the pre-trained models. Here, taking the registration
task as an example, we illustrated the advantage of joint
training i.e., the task network PCRNet and the downsampling
network MOPS-Net are jointly trained. As listed in Table VII,

(a) (b)
Fig. 14. Comparison of the classification performance of different down-
sampling methods applied to point clouds with various levels of noise. (a)
performance on the generated sets (b) performance on the completed sets
Note that the noise level refers to that added to each dimensional of 3D point
cloud data.

such a joint training manner can further improve registration
accuracy.

TABLE VII
QUANTITATIVE COMPARISONS OF MRES FOR PRE-TRAINED AND JOINTLY

TRAINED REGISTRATION NETWORKS. THE SMALLER, THE BETTER.

Pre-trained PCRNet Jointly trained PCRNet
m G M C G M C
64 8.58 8.56 8.00 5.96 8.18 8.22
32 7.97 8.53 8.54 6.74 9.18 9.65
8 12.63 12.68 12.68 6.94 11.15 11.15

D. Robustness Analysis
We also evaluated the robustness of the proposed MOPS-

Net to noise over the classification task. We added various
levels of Gaussian noise to input point clouds. As shown in
Figure 14, even the input point clouds are highly contaminated,
i.e., the noise level in each dimension is 10%, MOPS-Net still
remains high accuracy which is comparable to that of MOPS-
Net with clean input, demonstrating its robustness. Besides,
the accuracy of MOPS-Net with noisy input is still higher
than that of S-Net and SampleNet with clean input.

In Figure 15, we visually illustrated the downsampled points
by our MOPS-Net over noisy data, where it can be seen that
the proposed MOPS-Net can capture the important regions
(head, hands, legs) and the locations of sampled points remain
consistent at different noise levels.

E. Ablation Study
Taking the reconstruction task in Section V-B1 as an

example, we investigated the effect of the hyper-parameters
contained in the loss functions of our MOPS-Net and Sam-
pleNet [30]. The loss function used by SampleNet is given
as

LSampleNet = Ltask + βLprojection + γLsimplify, (12)

TABLE VI
QUANTITATIVE COMPARISONS OF MRES OF DONWSAMPLED POINT CLOUDS BY DIFFERENT METHODS USED FOR REGISTRATION. THE SMALLER, THE

BETTER.
RS Voxel FPS S-Net [29] SampleNet [30] MOPS-Net FMOPS-Net

m G M C G M C G M C G M C
64 17.47 10.37 9.98 10.93 12.83 13.26 8.30 8.69 8.29 8.58 8.56 8.00 7.94 8.87 8.84
32 26.95 14.46 13.12 10.23 15.45 14.99 8.48 9.26 9.18 7.97 8.53 8.54 7.78 8.86 8.92
8 61.14 44.80 33.28 13.47 17.67 17.67 13.4 14.88 14.86 12.64 12.68 12.68 12.13 12.98 12.98
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Fig. 15. Visualization of sampled point clouds by MOPS-Net on clean data
and noisy data with various levels of noise. (a) clean; (b) 1% noise ; (c) 2%
noise; (d) 5% noise; (e) 10% noise. Note that the noise level refers to that
added to each dimensional of 3D point clouds.

(a) SampleNet

(b) MOPS-Net
Fig. 16. Illustration of the effect of the hyper-parameters involved in the loss
functions of our MOPS-Net and SampleNet on reconstruction performance
(m = 32). SampleNet’s performance is highly sensitive to the hyper-
parameters, whereas ours is not.

which contains two hyper-parameters β and γ. Note that in
the experiments of Section V-B1, the hyper-parameters of
both MOPS-Net and SampleNet have been tuned to be almost
optimal, i.e., τmin = 0.5 and α = 0.2 for MOPS-Net and
β = 1e−4 and γ = 5e−5 for SampleNet.

As shown in Figure 16, we can see that our MOPS-Net
can consistently achieve almost optimal performance in wide
ranges of α and τmin, demonstrating its stability. However,
the performance of SampleNet varies largely as the values of
β and γ change. Besides, under the best parameter settings,
SampleNet is still worse than MOPS-Net in terms of both
NRECD and NREEMD.

F. Complexity Analysis

Table VIII reports the running time of various methods
applied to downsample point clouds with 1024 points each.
All methods were implemented on GTX 2080Ti GPU, and
we reported the average inference time per shape. From
Table VIII, we observe that the running time of FPS is linearly
proportional to the downsampled size m, while the other
methods are insensitive to m. Besides, S-Net and MOPS-
Net are even faster than random sampling. Compared with
S-Net, SampleNet requires an additional projection operation
involving k-NN search, and thus takes more time than S-Net.

TABLE VIII
AVERAGE RUNNING TIME (×10−4 SECONDS) FOR DOWNSAMPLING A

1024-POINT MODEL.
m RS FPS S-Net [29] SampleNet [30] MOPS-Net

512 1.22 68.28 0.78 3.39 1.00
256 1.26 29.02 0.77 2.95 0.95
128 1.22 15.32 0.75 2.72 1.06
64 1.27 8.68 0.79 2.50 0.99
32 1.32 5.12 0.79 2.39 0.89
16 1.12 2.47 0.72 2.38 0.87
8 1.16 1.46 0.73 2.33 0.98

TABLE IX
TIME EFFICIENCY (×10−1 SECONDS) FOR DOWNSAMPLING 40,960

POINTS.

m RS FPS S-Net [29] SampleNet [30] MOPS-Net
4096 0.07 182.77 8.39 10.07 7.24
1024 0.07 65.46 5.26 8.01 7.04
256 0.07 16.31 5.49 9.08 7.40

TABLE X
MEMORY CONSUMPTION AND RUNNING TIME OF MOPS-NET TO

DOWNSAMPLE m = 4096 POINTS FROM LARGE-SCALE POINT CLOUDS
WITH n = 40, 960 POINTS.

Module GPU Memory Time (×10−1)
Feature extraction 2123MB 6.59
Learn sampling 2560MB 0.04
Regress points 0MB 0.14
Task network 4MB 0.25

Besides, we also analyzed the complexity of downsam-
pling large-scale point clouds. The running time and memory
consumption were recorded during the inference period on
Quadro RTX 8000 GPU. Table IX lists the running time of our
MOPS-Net applied to downsample point clouds with 40,960
points each. We also provided the running time of random
sampling, FPS, and deep learning-based S-Net and SampleNet
as a reference. Note that FPS is an iterative searching process
that naturally cannot be parallelized by modern GPU devices.
Table X lists the memory consumption and running time
for each step when downsampling 4096 points from 40,960
points, where it can be observed that performing the standard
feature extraction via PointNet on large-scale point clouds
consumes most of the inference time. Since MOPS- Net, S-
Net and SampleNet all adopt PointNet as the feature extractor,
they yield similar efficiency. In the meantime, the proposed
sampling modules, including the learning of the sampling
matrix and regression of the sampled set are very efficient.
Besides, it is worth noticing that the MLP operators, which
formulate the feature extraction module and learning of the
sampling matrix module, require large memory consumption
when dealing with large-scale point clouds.

VI. CONCLUSION & FUTURE WORK

In this paper, we presented MOPS-Net, a novel end-to-
end deep learning framework to compactly represent 3D point
clouds in a task-oriented manner. In contrast to the existing
methods, we designed MOPS-Net from the perspective of
matrix optimization. As the original discrete and combinatorial
optimization problem is difficult to solve, we obtained a con-
tinuous and differentiable form by relaxing the 0-1 constraint
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of each variable. MOPS-Net elegantly mimics the function
of the resulting matrix optimization problem by exploring
both local and global structures of input data. MOPS-Net is
permutation invariant and can be end-to-end trained with a task
network. We applied MOPS-Net to three typical applications,
including 3D point cloud classification, reconstruction, and
registration, and observed that MOPS-Net produces better
results than state-of-the-art methods. Moreover, MOPS-Net is
flexible in that with a simple modification, a single network
with one-time training can handle arbitrary downsampling
ratios. We justified our optimization-driven design principle
and demonstrated the efficacy of MOPS-Net through extensive
evaluations and comparisons.

The promising results of MOPS-Net inspire several interest-
ing future directions. For example, it can replace the widely
used FPS in feature extraction of current networks to boost
performance. Though MOPS-Net is designed for point cloud
downsampling, increasing the dimension of the differential
sampling matrix allows us to handle upsampling as well.
Moreover, MOPS-Net opens the door to applying matrix opti-
mization in deep learning. We believe the matrix optimization
idea is general and can work for other selection and ranking
problems, such as keyframe selection in videos [77], [78], band
selection in hyperspectral images [79], [80] and view selection
in light field images [81].
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T. Sugio, “G-pcc codec description v2,” ISO/IEC JTC1/SC29/WG11
N18189, 2019.

[5] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and
E. Steinbach, “Real-time compression of point cloud streams,” in 2012
IEEE International Conference on Robotics and Automation. IEEE,
2012, pp. 778–785.

[6] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou,
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