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Abstract
Deep learning has proven an effective tool for 3D point cloud processing. Currently, most deep set architectures are developed
for sparse inputs (typically with a few thousand points), which are unable to provide sufficient structural statistics and
semantic cues due to low resolutions. Since these architectures suffer from unacceptable computational and memory costs
when consuming dense inputs, there is a pressing need in real-world applications to handle large-scale 3D point clouds. To
bridge this gap, this paper presents a novel unsupervised neural architecture called RegGeoNet to parameterize an unstructured
point set into a completely regular image structure dubbed as deep geometry image (DeepGI), such that spatial coordinates of
unordered points are recorded in three-channel grid pixels. Intuitively, our goal is to embed irregular 3D surface points onto
uniform 2D lattice grids, while trying to preserve local neighborhood consistency. Functionally, DeepGI serves as a generic
representation modality for raw point cloud data and can be conveniently integrated into mature image processing pipelines.
Driven by its unique structural characteristics, we are motivated to customize a set of efficient feature extractors that directly
operate on DeepGIs for achieving a rich variety of downstream tasks. To demonstrate the potential and universality of our
proposed learning paradigms built upon DeepGIs for large-scale point cloud processing, we conduct extensive experiments
on various downstream tasks, including shape classification, object part segmentation, scene semantic segmentation, normal
estimation, and geometry compression, where our frameworks achieve highly competitive performance, compared with
state-of-the-art methods. The source code will be publicly available at https://github.com/keeganhk/RegGeoNet.
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1 Introduction

Point clouds depict surface geometry with a set of irregular
and unordered spatial points, which are characterized as an
unstructured representation modality for three-dimensional
structures. Different from common regular visual modalities
defined on canonical lattice grids, such as 2D images/videos
and 3D voxels, which can be naturally modeled by power-
ful 2D/3D convolutional neural networks (CNNs) (He et al.,
2016; Karpathy et al., 2014; Krizhevsky et al., 2012; Long
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Fig. 1 A typical example for illustrating the necessity of exploiting
large-scale point clouds. In this 3D shape classification task, the sparse
model (right) fails to provide sufficient details for the tap component,
which is crucial for distinguishing bathtub from other similar object
categories such as bed

et al., 2015; Ren et al., 2015; Simonyan and Zisserman, 2014;
Tran et al., 2015), point cloud data are known to be incom-
patible with conventional learning frameworks. This causes
significant inconvenience in developing powerful and effi-
cient learning pipelines for point cloud modeling.

Motivated by remarkable success of deep convolutional
architectures in the last decade for visual recognition, the
current point cloud research community has been devoted
to adapting the existing mature design experience of CNNs
and accordingly customizing “convolution-like” aggregators
defined on point sets. Typically, one common approach to
imitate the learning pattern of standard spatial convolution
is to collect neighboring points using k-nearest neighbor
(k-NN) search or ball query, then conduct local feature aggre-
gation through channel pooling (Qi et al., 2017b) or kernel
matching (Hua et al., 2018; Li et al., 2018b; Thomas et al.,
2019; Verma et al., 2018). The concept of “neighborhood”
can be further generalized from static spatial domain to
dynamic feature domain, which deduces graph-based point
cloud convolution (Wang et al., 2019). Tomimic hierarchical
feature abstraction mechanism of CNN workflows, one can
introduce either heuristic down-scaling algorithms like far-
thest point sampling (FPS), as adopted in Qi et al. (2017b),
Wu et al. (2019), or learning-based subset selection tech-
niques (Nezhadarya et al., 2020; Yan et al., 2020; Yang et al.,
2019) to achieve multi-scale and multi-level feature extrac-
tion.

Despite the proliferation of specialized deep set architec-
tures, there still lacks a unified learning paradigm for generic
point cloud processing. Moreover, as revealed in recent stud-
ies (Le et al., 2020; Liu et al., 2019d; Xu et al., 2020), most
of the existing learning frameworks incur extremely high
computational complexity and memory consumption, where
a large amount of superfluous calculations are wasted on
the data structurization process. This issue significantly lim-
its model efficiency and scalability, especially when dealing
with an increasing number of points. Consequently, previ-
ous studies mainly focus on processing sparse point clouds

with several thousand points, and basically ignore exploiting
large-scale point clouds.

In real-world application scenarios, however, there is still
a pressing need for large-scale point cloud processing, since
sparse models usually cannot provide sufficient structural or
semantic information required for accurate and robust shape
analysis or visual recognition. As illustrated in Fig. 1, the tap
component is supposed to be the key clue for recognizing the
bathtub object, without which it becomes impossible to dis-
tinguish it with the bed category, even for human observers.
By contrast, the dense model is able to detailedly capture
the crucial part of tap, making the subsequent decision much
more reliable.

To bridge the gapwith large-scale point cloud learning,we
present a novel neural architecture called RegGeoNet, which
is designed to convert an irregular and unstructured 3D point
cloud into a completely regular 2D representation modality
denoted as deep geometry image (DeepGI). As illustrated
in Fig. 2, the three-dimensional spatial coordinates of input
points are re-organized with learned “canonical” orders and
captured in the color pixels of a three-channel image. Such a
geometric modality transformation process can be described
as “opening” a given 3D object with arbitrary geometric and
topological structures and “flattening” the 3D surface onto
2D planar domains, while trying to maintain local neighbor-
hood consistency between the original 3D domain and the
parameterized 2D planar domain.

Just like conventional rule-based voxelization and mesh
generation pipelines, RegGeoNet can be functionally viewed
as a neural pre-processing procedure for point cloud struc-
turization. Given a benchmark shape dataset, we separately
fit a RegGeoNet on each of the point clouds to gener-
ate the corresponding DeepGI, which serves as a generic
geometry representation modality and can be permanently
preserved once created. The regular representation structure
of DeepGI enables us to conduct downstream processing in
a highly efficient manner, since computationally expensive
data structurization can be naturally avoided. For example,
spatial neighbors are inherently encoded in adjacent pixels,
and point cloud down-sampling (e.g., FPS) can be achieved
by image pooling. In terms of the working mechanism,
RegGeoNet shares the samebig picture as the classic learning
paradigmof “deep priors”, as investigated in image/geometry
processing areas (Chu et al., 2021; Gadelha et al., 2019; Gan-
delsman et al., 2019; Hanocka et al., 2020; Heckel and Hand,
2019; Ulyanov et al., 2018). Instead of training on a large
amount of task-specific data, we treat the network structure
itself as geometric prior and independently achieve regular
geometry parameterization for given point clouds.

Technically, as illustrated inFig. 3,we investigate a global-
to-local (coarse-to-fine) surface parameterization scheme,
which is composed of global anchor embedding (GAE) and
local patch embedding (LPE). In the GAE module, we sim-
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Fig. 2 Illustration of the proposed large-scale point cloud processing
pipeline driven by the proposed regular geometry representation. Given
an unstructured 3D point set, RegGeoNet converts it into a 2D lattice
structure called DeepGI, where irregular surface points are captured in

regular image pixels. As a generic 3D representation modality, all the
downstream point cloud processing tasks can be directly performed on
DeepGIs

Fig. 3 A toy example for converting a set of uniformly sampled points on a unit sphere into DeepGI, where 3D points and 2D pixels are color-coded
to indicate mappings. In the generated 2D DeepGI, the actual values for each 2D pixel are the corresponding 3D point coordinates

plify an input dense point cloud into a sparse set of “anchor”
points, after which we explore a generative framework to
create a global geometry parameterization in the form of
2D image lattice. In the LPE module, we construct local
patches centered at every anchor point, and separately embed
3D patch points onto the pre-defined 2D lattice space. By
assembling the global and local embeddings, we can gener-
ate a complete DeepGI structure for the whole input point
cloud. Finally, we design a boundary connectivity align-
ment (BCA)module, serving as a post-refinement procedure,
to enhance spatial continuity between adjacent local patch
parameterizations. As an unsupervised learning framework,
each core component of the proposed RegGeoNet has clear
geometric motivation and is functionally independent, which
decomposes the complex geometry parameterization task
into several sub-problems that are easier to solve. More-
over, motivated by the unique structural characteristics of
the proposedDeepGI representationmodality, we investigate
different possibilities of deep feature extraction, and further
customize a set of powerful and efficient learning operators
that directly operate on DeepGIs.

To validate the superiority of the overall learning frame-
work driven by regular geometry representation, we conduct
extensive evaluations on in varieties of downstream large-
scale point cloud processing scenarios, including shape
classification, object part segmentation, scene semantic seg-
mentation, normal estimation, and geometry compression,
where our frameworks achieve highly competitive perfor-

mance, compared with the current state-of-the-art learning
approaches in the fields.

In summary, this paper mainly makes the following con-
tributions:

(1) We propose a newmodality called DeepGI for represent-
ing large-scale 3Dpoint clouds as 2D imageswith regular
geometry.

(2) We design an unsupervised neural architecture called
RegGeoNet to create DeepGIs from unstructured point
clouds with arbitrary geometry and topology.

(3) We present an efficient large-scale point cloud learn-
ing framework that directly operates on DeepGIs, which
achieves state-of-the-art performances in various tasks.

(4) We reveal the potential of exploiting large-scale point
cloud data, which is ignored by previous studies that only
focus on sparse inputs.

The remainder of this paper is organized as follows. In
Sect. 2, we review previous studies that are closely related
to the general scope of our work. In Sect. 3, we introduce
specific techniques involved in the proposed RegGeoNet for
regular point cloud geometry parameterization. In Sect. 4,
we discuss different possibilities for extracting deep features
directly from the proposedDeepGI representation structures.
We document the implementation details, experimental set-
tings, and comparative results in Sect. 5.We discuss the main
features and potentials of DeepGI and RegGeoNet, and point
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out open issues in Sect. 6 for future exploration. In the end,
we conclude this paper in Sect. 7.

2 RelatedWork

In this section, we start by reviewing common deep learning-
based3Dshape analysis frameworks, including rasterization-
based (Sect. 2.1) and point-based (Sect. 2.2) learning
approaches. Besides, since the core idea in this paper is to
create regular 2D geometry parameterizations for 3D point
clouds,weparticularly discuss parameterization-based learn-
ing pipelines in Sect. 2.3, whose processing objects are not
confined to point clouds but can involve more diverse types
such as polygon meshes. Moreover, there also exists a lim-
ited number of studies focusing on using large-scale point
clouds, which are summarized in Sect. 2.4.

2.1 Rasterization-Based Learning Approaches

One of the most straightforward schemes to overcome irreg-
ularity and unstructuredness of point clouds is to transform
raw point sets into regular representation modalities through
rasterization procedures, before feeding them into the subse-
quent processing pipelines.

Voxelization has been widely applied to produce volu-
metric grids for generic 3D shape representation, in which
discrete spatial points are quantized into densely and uni-
formly distributed 3D occupancy grids. As investigated in
previous works (Maturana and Scherer, 2015; Qi et al., 2016;
Wuet al., 2015), this voxel-based learningparadigmnaturally
supports standard 3D convolutional architectures. Unfor-
tunately, these approaches are not suitable for consuming
high-resolution volumetric data due to cubic growth of com-
putational complexity and memory footprint. This limitation
leads to significant information loss during shape modeling,
since geometric details can not be preserved in low-resolution
voxels. Despite the later efforts in enhancing computational
efficiency (Riegler et al., 2017; Wang et al., 2017), there still
exists a performance trade-off, which needs to be carefully
balanced in practical applications.

Another common alternative is multi-view projection,
in which a single 3D object from multiple viewpoints
is projected onto 2D planes, leading to a collection of
multi-view images (Gojcic et al., 2020; Kalogerakis et al.,
2017; Kanezaki et al., 2018; Su et al., 2015; Yu et al.,
2018). This learning paradigm enables to introduce mature
2D deep convolutional networks pretrained on large-scale
annotated image databases (Krizhevsky et al., 2012) for
discriminative shape recognition. However, despite its lead-
ing performance in classification and retrieval tasks, it is
highly non-trivial to extend such view-based approaches
to fine-grained (point-wise) prediction/labeling application

scenarios, such as semantic segmentation and normal estima-
tion. In fact, DeepGI also serves as a 2D image representation
structure. In contrast to rendered multi-view images of 2D
projections, however, geometry information is explicitly
encoded in the DeepGI structure, making it a generic 3D
representation modality.

2.2 Point-Based Learning Approaches

Currently, point-based learning networks are attractingmajor
attention in the research community. This learning paradigm
gets rid of cumbersome pre-processing procedures and can
directly operate on point sets, making it possible to capture
fine-grained spatial structures naturally.

The first deep set architecture PointNet (Qi et al., 2017a)
proposes to learn point-wise embeddings using sharedmulti-
layer perceptrons (MLPs) and apply channel max-pooling to
obtain the global shape descriptor in a permutation-invariant
fashion. Inspired by conventional CNN architectures, Point-
Net++ (Qi et al., 2017b) integrates local geometry modeling
by aggregating features from spatial neighbors and further
introduces farthest point sampling (FPS) to achieve hierar-
chical feature abstraction. These two pioneering works cast
profound influences on follow-up studies in terms of defining
“convolution-like” operators on unstructured point sets.

PWCNN (Hua et al., 2018) waives the assumption that
points should be unordered, and partitions spatial neighbors
into kernel cells for convolving with weights. PointCNN (Li
et al., 2018b) uses learned transformation matrices to adap-
tively specify local convolutional orders. FeaStNet (Verma
et al., 2018) establishes soft correspondence between filter
weights and graph nodes. SO-Net (Li et al., 2018a) builds
the two-dimensional self-organizing map to explicitly model
the spatial distribution of given points. SPLATNet (Su et al.,
2018) performs sparse bilateral convolution by projecting
point features into high-dimensional lattice. PointConv (Wu
et al., 2019) formulates convolutional kernels by approxi-
mating continuous weight and density functions conditioned
on local coordinates. RS-CNN (Liu et al., 2019c) exploits
geometric relations among points to achieve explicit reason-
ing about spatial layouts. DGCNN (Wang et al., 2019) is
built upon learnable relations and dynamically aggregates
information from feature-level neighbors under global con-
text. ShellNet (Zhang et al., 2019) collects statistics from
concentric spherical shells, which allows structured feature
fusion across different levels of receptive fields. PAT (Yang
et al., 2019) implements adaptive down-scaling based on
Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017).
PointASNL (Yan et al., 2020) chooses a different implemen-
tation of differentiable adaptive sampling that fine-tunes the
initial uniformly sampled points with learned shifts. KPConv
(Thomas et al., 2019) learns a spatially deformable point
cloud convolution with weights located in Euclidean space
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based on kernel points, which is more robust to varying
densities. GDANet (Xu et al., 2021b) dynamically disen-
tangles input points into contour and flat parts to capture
holistic and complementary geometric semantics. PAConv
(Xu et al., 2021a) constructs dynamic convolutional kernels
by adaptively learning to assemble weight matrices in a pre-
defined weight bank. CurveNet (Xiang et al., 2021) focuses
on long-range feature modeling by grouping and aggregating
sequences of points (i.e., curves). Particularly, FPConv (Lin
et al., 2020) introduces a surface-style convolutional opera-
tor that directly works on the underlying surface geometry of
point clouds, where local flattening is achieved by learning
weight maps that softly project surrounding points onto 2D
grids. Different from our work focusing on the big picture of
regular geometry representation modality for irregular point
cloud data, FPConv is still limited as an implicit local aggre-
gation mechanism that operates in the feature space.

Conclusively, despite the great efforts in investigating var-
ious “convolution-like” operators defined on irregular point
sets, these methods are still computationally inefficient due
to expensive data structurization, which can be avoided on
regular DeepGI structure.

2.3 Parameterization-Based Learning Approaches

In the geometry processing community, there exists a fam-
ily of intrinsic representation and learning approaches, in
which 3D surface geometries can be encoded into a series of
local parameterizations (Boscaini et al., 2016; Masci et al.,
2015; Monti et al., 2017) or a complete global parameteri-
zation (Haim et al., 2019; Maron et al., 2017; Sinha et al.,
2016, 2017). It is worth noting that these methods are par-
ticularly developed for 3D mesh models, instead of point
clouds, and thus beyond the scope of this paper. Neverthe-
less, these efforts lay the foundation for our exploration in
creating regular geometry representation directly from point
clouds, and hence are also included for completeness.

More specifically, GCNN (Masci et al., 2015) constructs
geodesic polar coordinates from the local patch around
each point, where convolutions can be naturally extended to
non-Euclidean manifolds. This learning paradigm was fur-
ther improved by introducing anisotropic diffusion (Boscaini
et al., 2016) andGaussianmixture (Monti et al., 2017) kernels
as patch operators. Considering that local parameterizations
fail to incorporate global contextual information, Sinha et al.
(2016) globally computed spherical parameterization to cre-
ate a regular 2D geometry image (GI) (Gu et al., 2002) from
a given 3D mesh model, after which standard 2D CNNs can
be directly used for deep feature extraction. SurfNet (Sinha
et al., 2017) attempts to generate consistent GIs from a cat-
egory of 3D shapes by solving a large-scale correspondence
problem, and further applies GIs to generative surface mod-
eling. Maron et al. (2017) investigated a global seamless

parameterization defined on a flat torus. Haim et al. (2019)
introduced a broad family of low-distortion surface-to-image
representation basedon a coveringmap.However, since com-
puting global parameterization for complex topology and/or
geometry can be difficult, these approaches only deal with
clean, single-component, and manifold polygonal meshes.
Additional pre-processing procedures are needed to repair
erroneous manifolds and transform high-genus mesh models
into sphere (genus-zero) topologies. GWCNN (Ezuz et al.,
2017) presents a parametric and differentiable metric align-
ment layer amenable to gradient-based optimization, which
can create regular representations for richer types of geo-
metric data like meshes, point clouds, and general graphs.
However, this method relies on prior knowledge for choos-
ing appropriate shape descriptors. In practice, it is sensitive to
topological noises and suffers from training difficulties due
to quadratic parameter growth.

2.4 Deep Learning for Large-Scale Point Clouds

There exists a limited number of studies dealing with large-
scale point cloud learning. SPG (Landrieu and Simonovsky,
2018) partitions an entire point cloud into geometrically sim-
ple parts and constructs a superpoint graph to learn contextual
information. However, the actual geometric partition and
graph construction processes are computationally intensive.
TangentConv (Tatarchenko et al., 2018) projects local sur-
face geometry onto precomputed tangent planes and apply
planar convolutions. This strategy relies on heavy calcu-
lations for normal estimation, which can be sensitive to
noises. FCPN (Rethage et al., 2018) combines point-based
and voxel-based aggregation operators to implement efficient
processing frameworks. A specialized scene flow estima-
tion framework can be found in HPLFlowNet (Gu et al.,
2019). RandLA-Net (Hu et al., 2020) particularly explores
the potential of simple random sampling to build remarkably
efficient hierarchical feature abstraction pipelines. In contrast
to the existing studies that focus on enhancing specific net-
work architectures, we are interested in exploring a regular
geometric data representation structure, where we can omit
expensive data structurization when conducting downstream
processing.

3 ProposedMethod

As a generic geometry representation modality, the proposed
DeepGIs serve as permanent records of 3D contents. Given
a shape dataset, we pre-convert all point cloud models into
DeepGI structures for storage, and all downstream applica-
tions are directly conducted on DeepGIs. In what follows,
we first provide an overview of our DeepGI representation

123



International Journal of Computer Vision (2022) 130:3100–3122 3105

Fig. 4 Overall workflow of RegGeoNet for converting large-scale
3D point clouds into DeepGIs under a global-to-local surface param-
eterization framework. In the GAE module, we generate a global
parameterization by embedding a sparse set of uniformly sampled
anchor points onto a coarse 2D lattice. In the LPEmodule, we separately
generate local parameterizations for patches centered at previously
parameterized anchor points. Global and local parameterizations can
be directly assembled to form a raw DeepGI, which is further fed into
the BCA module for iterative refinement of topological consistency
between adjacent local patch parameterizations

framework in Sect. 3.1, then sequentially introduce technical
details of core modules in Sects. 3.2, 3.3, and 3.4.

3.1 ProblemOverview

Given an unstructured 3D point cloud P ∈ R
N×3, we aim

at creating a three-channel image representation structure
I ∈ R

m×m×3 dubbed as DeepGI, whose M = m × m pixel
values correspond to the original 3D spatial coordinates. Intu-
itively, we expect that local neighborhood consistency can be
effectively maintained between the three-dimensional shape
space and the two-dimensional grid space. This implies that
spatially-adjacent 3D points are supposed to be accordingly
parameterized onto neighboring 2D pixel locations, yield-
ing a smooth geometry image whose pixel values (i.e., 3D
spatial coordinates) can be visualized as a continuous color
distribution.

Togenerate 2DDeepGIs from3Dpoint clouds,wedecom-
pose the complicated underlying problem of surface param-
eterization into several independent sub-problems that can
be separately solved by specialized sub-networks. Specif-
ically, we investigate a global-to-local processing pipeline

Fig. 5 Illustration of the GAE module, where an initial 2D lattice is
progressively embedded and decoded into different levels of image
structures

for generating regular geometry embedding and an iterative
boundary alignment mechanism for enhancing topological
consistency. As shown in Fig. 4, the proposed RegGeoNet
correspondingly consists of three core modules: (1) Global
AnchorEmbedding (GAE) for generating a global parameter-
ization of downsampled sparse anchors that coarsely depict
shape geometry; (2) Local Patch Embedding (LPE) for sep-
arately generating a series of local parameterizations of all
patches centered at anchor positions; and (3) Boundary Con-
nectivity Alignment (BCA) for enhancing spatial continuity
at adjacent patch boundaries, thus reducing blocking effect
in the complete DeepGI structure.

Note that each of the three core modules (i.e., GAE,
LPE, and BCA) is designed as a fully unsupervised learn-
ing process with independent functionality and interpretable
geometric motivation. Under such a decoupled problem for-
mulation, we can conveniently customize different modeling
schemes and optimization objectives for the corresponding
sub-networks. Hence, we tend to divide the overall narrative
in each of the following sections into (1) design philoso-
phy, (2) network structure, and (3) fitting/training strategy,
to facilitate the understanding of our methodology.

3.2 Global Anchor Embedding (GAE)

3.2.1 Design Philosophy

The goal of the GAE module is to globally create a regu-
lar lattice parameterization for a sparse set of anchor points
uniformly downsampled from the dense input. Inheriting
conventional learning paradigms in image generation and
super-resolution, we explore a fully convolutional geome-
try embedding framework, in which an initial low-resolution
lattice is progressively upscaled and decoded into differ-
ent levels of high-resolution image representation structures,
whose pixels are supposed to reconstruct spatial coordinates
of the target anchor points.
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The core intuition behind our design is that the underlying
neighborhood aggregation mechanism in spatial convolution
implicitly imposes strong regional smoothness and conti-
nuity constraints on the generated image pixel values (i.e.,
generated 3D spatial coordinates), especially under a super-
resolution workflow with feature interpolation. Such an
embedding strategy naturally ensures that spatially-adjacent
points tend to be mapped to neighboring pixels on the image
lattice.

3.2.2 Network Structure

As illustrated in Fig. 5, the first step in the GAE module is
to uniformly downsample the original large-scale point set
P ∈ R

N×3 into a sparse subset of anchor points PA ∈ R
NA×3

(NA � N ). For efficiency purposes, the process of simpli-
fying P into PA is implemented by two stages, i.e., starting
by applying grid-subsampling to produce a simplified ver-
sion of input P, after which further applying farthest point
sampling (FPS) to generate PA containing the required num-
ber of points. Particularly, we make a minor modification in
all experiments for the process of FPS by explicitly speci-
fying the point that is closest to the coordinate origin as the
starting point, instead of random selection, which can avoid
being influenced by index permutation. At the output end,
we expect to generate a three-channel image representation
structure IA ∈ R

na×na×3 (NA = na × na), where the irreg-
ular 3D spatial points are placed onto the regular 2D lattice
space.

More specifically, we pre-define a low-resolution lattice

UA ∈ R
n(0)
a ×n(0)

a ×2, whose values are N (0)
A = n(0)

a × n(0)
a dis-

crete grid coordinates uniformly distributed in the unit square
space [0, 1]2. This can be be considered as a two-channel
image structure. Hence, we can feed UA into a special-
ized “image super-resolution” architecture consisting of ra
convolutional stages, each with 2× feature upscaling. This

produces a series of feature maps {X(i)
A ∈ R

n(i)
a ×n(i)

a ×d(i)
a }rai=1,

where n(i)
a = 2i × n(0)

a . Then, we adopt hierarchical fea-
ture decoding to generate different resolutions of regular
image parameterizations, where each feature map X(i)

A is
fed into a separate set of convolutional layers to output a

three-channel image structure I(i)A ∈ R
n(i)
a ×n(i)

a ×3 containing

N (i)
A = n(i)

a × n(i)
a pixels. For simplicity, we denote IA and

na as the highest resolution versions, I(ra)A and n(ra)
a , respec-

tively.

3.2.3 Fitting Strategy

Here, the generated image pixels are fit to anchor points by
optimizing network parameters to minimize a reconstruc-
tion loss between different levels of IA and ground truth PA.

Specifically, treating image pixels as point coordinates natu-
rally motivates us to supervise the reconstruction process by
minimizing point set similarity. In our implementation, we
introduce hierarchical supervision built upon earth mover’s
distance (EMD) (Fan et al., 2017), which is formulated as

Lrec

({
I(i)A

}
;
{
P(i)
A

})
=

ra∑
i=1

φemd

(
I(i)A ;P(i)

A

)
, (1)

where P(i)
A ∈ R

N (i)
A ×3 is uniformly downsampled from

P(ra)
A (identified with PA) serving as a coarser ground truth,

and φemd(∗; ∗) computes EMD between two point sets.
By optimizing objective function Lrec, we obtain a global
parameterization IA that nicely approximates anchor points
in PA. Note that the network itself serves as the deep prior,
where we separately optimize network parameters (i.e., con-
volutional filters) to generate IA for every single inputmodel.
See Sect. 5.1.2 for more training details.

3.3 Local Patch Embedding (LPE)

3.3.1 Design Philosophy

The goal of the LPE module is to separately create pla-
nar parameterizations for local patches centered at each of
the global anchors. Different from the GAE module imple-
mented as a generative framework driven by standard spatial
convolutions, the LPE module is built upon shared MLPs
conditioned on a unique patch signature, which tends to
directly build a smooth point-wise mapping between 3D
patch points and learned 2D planar embeddings.

Despite the fact that the GAE module is applicable to
local patch parameterization, its working mechanism can be
highly inefficient to handle a large number of patches. Com-
pared with a complete shape, local patches covering small
regions usually have much simpler geometric and topolog-
ical structures, which implies that we can “unfold/flatten”
the underlying 3D surface of target patches onto 2D planes
in a geometrically-meaningful manner. Therefore, instead of
separately fitting on every single patch, we can train the LPE
module offline on a large amount of patch samples, and then
apply the trained model to any given patch without cumber-
some overfitting/fine-tuning.

3.3.2 Network Structure

As shown in Fig. 6, the LPE module takes as inputs a col-
lection of local patches decomposed from the whole point
set P. Treating each global anchor a(i) ∈ IA as patch cen-
troid, we collect N ′

L spatial neighbors through k-NN search,

which totally deduces NA local patches {P(i)
L ∈ R

N ′
L×3}NA

i=1

by querying for all anchor points {a(i)}NA
i=1. At the output end,
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Fig. 6 Flowchart of the LPE module, where local 3D patches are unfolded into 2D planar embeddings and further resampled on lattice grids to
generate regular image blocks

we expect to correspondingly generate NA planar embed-
ding sets {E(i)

L ∈ R
N ′
L×2}NA

i=1, where 3D points in P(i)
L and

2D points in E(i)
L form row-wise one-to-one mappings. To

ensure spatial coverage, it is required that NA × N ′
L ≥ N

for redundant query of patch points. After that, we conduct
grid resampling between P(i)

L and E(i)
L on pre-defined lat-

tice grids to generate a collection of regular image structures
{I(i)L ∈ R

nl×nl×3}NA
i=1, such that the original N

′
L spatial points

in local patchP(i)
L are parameterized into NL = nl×nl image

pixels. Without loss of generality, we remove superscript
“(i)” in the subsequent notations, restricting our attention
to a local patch PL centered at an anchor point a, which is
mapped as planar embedding EL to create regular parame-
terization IL .

More specifically, we perform patch encoding on a pre-
normalized local patch through a deep set architecture (Qi
et al., 2017a) followed by channel average pooling, which
produces point-wise embedding representations and a vec-
torized feature signature denoted as sL .We then replicate and
concatenate sL with the normalized point coordinates, and
deploy shared MLPs to generate point-wise planar embed-
dings within a unit square [0, 1]2. The overall processing
pipeline can be formally described as

EL = ϕ2
(
ϕ1([P̄L ; sL ])) , (2)

where P̄L represents relative coordinates after normalizing
PL into a unit ball, [∗; ∗] represents channel concatenation,
ϕ1(·) and ϕ2(·) denote non-linear transformation built upon
sharedMLPs. In our implementation, we employ the sigmoid
activation function in the output layer to restrict values of the
generated planar embeddings EL within the range of (0, 1).

3.3.3 Training Strategy

Benefiting from the implicit smoothness of such point-wise
embedding operations, we can naturally learn a continuous
3D-to-2D mapping by imposing a “repulsion” constraint on
the generated planar embedding points.

Given a certain embedding point e j ∈ EL , we search its
nearest neighbor ẽ j , and constrain that they can be separated

by an appropriate distance. Formally, we can define

Lrep(EL) =
N ′
L∑

j=1

max
(
0, α · τu − ∥∥e j − ẽ j

∥∥
2

)
, (3)

where τu = 1/(
√
N ′
L − 1) generally denotes the minimum

threshold for pulling apart nearest neighbors over a uniform√
N ′
L ×

√
N ′
L lattice. We empirically choose the relaxation

factor as α = 0.5, which works robustly in all experiments.
Sincewewill re-scale the generated planar embedding points
into [0, 1]2 for making full use of the unit square space after
the training phase, we can safely set small value for the fixed
distance threshold.

Furthermore, inspired by the classic non-linear dimen-
sionality reduction algorithm LLE (Roweis and Saul, 2000),
we also add a manifold embedding constraint (MEC)
to explicitly preserve neighborhood consistency between
sourcePL and targetEL . Given a typical source point l j ∈ PL

and its planar embedding e j ∈ EL , we jointly minimize the
following two reconstruction errors as

Lmec_pat (l j ) =
∥∥∥∥l j −

∑
k∈N (l j )

(w jk · lk)
∥∥∥∥
2
, (4)

and

Lmec_ebd(e j ) =
∥∥∥∥e j −

∑
k∈N (l j )

(w jk · ek)
∥∥∥∥
2
, (5)

where N (l j ) is the index set that specifies KL neighboring
points around l j , and we deploy a separate learning branch
built upon a three-layer shared MLP to adaptively regress
frompoint-wise embeddings the corresponding linear combi-
nationweightsWL ∈ R

N ′
L×KL , which satisfy

∑KL
k=1 w jk = 1

for j = 1, · · · , N ′
L . Thus, the complete manifold embedding

constraint is given by

Lmec(PL ;EL) =
N ′
L∑

j=1

[Lmec_pat (l j ) + Lmec_ebd(e j )
]
. (6)

Intuitively, we expect that the same set of locally linear
combination weights WL for 3D source points PL can also
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Fig. 7 Local patch embeddings generated by the LPE module with
and without the manifold embedding constraint (MEC). Rows 1 and 2:
patches with disk topology; Row 3: multiply connected domain; Row
4: patch with disconnected components; Row 5: non-manifold config-
uration

describe neighborhood distribution of their 2D embedding
points EL . When combined with Lrep as the overall training
objective of the LPE module, Lmec is multiplied by a scalar
γmec and thus serves as an adjustable regularizer. The overall
objective function is written as

Llpe = Lrep + γmec · Lmec, (7)

where γmec is initialized as 1 in the beginning and linearly
decays to 0 with the training epoch. Intuitively, this means
imposing a stronger constraint on neighborhood consistency
in earlier training stages. As the training process goes on, the
overall distribution of planar embedding points becomes sta-
ble, and thuswe gradually paymore attention to the repulsion
loss to ultimately reduce points clustering.

Figure 7 shows some typical examples of patch embed-
dings. Note that the LPE module is offline trained on a large
dataset of patches, instead of separately fitting on every local
patch of the given point cloud model. We refer the readers to
Sect. 5.1.2 for more details.

3.3.4 Grid Resampling

To create regular parameterization IL ∈ R
nl×nl×3 in the form

of image lattice, we perform grid resampling to redistribute
patch pointsPL ∈ R

N ′
L×3 onto uniform grids based on planar

embedding locations EL ∈ R
N ′
L×2.

To this end, we pre-define nl × nl uniform lattice grids in
[0, 1]2 denoted as UL ∈ R

NL×2, and build a Bipartite graph
Gebd = (EL ,UL ,VL) based on nearest neighbor matching,

Table 1 Notations of key concepts involved in the proposed method

Symbol Modality Dimension Description

P 3D point set [N , 3] Dense input

PA 3D point set [NA, 3] Global anchors

{P(i)
L }NA

i=1 3D point sets NA × [N ′
L , 3] Local patches

{E(i)
L }NA

i=1 2D point sets NA × [N ′
L , 2] Planar ebd.

IA 2D image [na, na, 3] global para.

{I(i)L }NA
i=1 2D images NA × [nl , nl , 3] Local para.

I 2D image [m,m, 3] DeepGI

where graph edges VL indicate the matching relationships
between the N ′

L planar embedding points in EL and the NL

lattice grid positions inUL . After that, sinceEL point-wisely
corresponds to PL , we directly transfer the same matching
relationships between {EL ,UL} to {PL ,UL}, and accord-
ingly obtain a Bipartite graph Gpat = (PL ,UL ,VL) that
specifies a mapping between irregular patch points in PL

and regular grid positions in UL . We follow such mapping
relationships to fill in all nl × nl lattice grids with patch
points, which can deduce a regular patch parameterization
IL ∈ R

nl×nl×3. Here, we do not require N ′
L = NL . Instead,

we typically specify NL ≥ N ′
L to perform grid resampling

in a redundant manner for reducing the loss of points.
It is also worth noting that, in order to construct the reg-

ular lattice structure, grid resampling can be “softened” into
neighborhood interpolation operators to avoid the repeti-
tive pixel representation. However, this strategy destroys raw
information of point-wise coordinates and may produce sur-
face outliers when dealing with complex patches.

3.4 Boundary Connectivity Alignment (BCA)

Going back to our preceding notations with superscripts.
In the GAE and LPE modules, we decompose the input
large-scale point set P ∈ R

N×3 into a global anchor
set PA ∈ R

NA×3 and multiple local patch sets {P(i)
L ∈

R
N ′
L×3}NA

i=1, which are correspondingly encoded in a global
lattice parameterization IA ∈ R

na×na×3 and multiple local
lattice parameterizations {I(i)L ∈ R

nl×nl×3}NA
i=1. To ease read-

ing, we summarize the notations of key concepts in Table 1.
Now, we can assemble global and local embeddings into a

complete image representation structure by assigning square
image block I(i)L onto the pixel location of its anchor point
a(i) ∈ IA. This produces a raw DeepGI representation struc-
ture I ∈ R

m×m×3 that encodes the original N spatial points in
M image pixels. Apparently, we can deduce M = NA × NL

(m = na × nl ). Structurally, DeepGI is an m × m three-
channel image locally composed of na × na square image
blocks, each of which contains nl × nl grid pixels.
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3.4.1 Design Philosophy

Unfortunately, although the proposed global-to-local pro-
cessing pipeline meets the need of computational efficiency,
it will inevitably cause discontinuities along boundaries
between adjacent local blocks in the complete DeepGI. This
is because local patches are separately parameterized into
regular images without interaction. Since two adjacent 3D
patches can be freely unfolded at arbitrary angles, their orig-
inal boundary regions may not stay connected in the 2D
embedded domain, which inevitably results in sharp block
edges.

Such topological mismatch is unfavorable and causes
inconvenience in downstream applications and learning
tasks. Therefore, we investigate the BCA module to align
local patch parameterizations. Intuitively, we adaptively
rotate the current planar embedding points {E(i)

L }NA
i=1 around

local block centers with a set of appropriate angles {θi }NA
i=1.

Despite the fact that there exists no optimal situation where
distortion can be completely avoided, we expect that the
updated local embeddings can enhance boundary connec-
tivity of patch parameterizations, reducing blocking effect
and generating a smoother DeepGI.

3.4.2 Network Structure

Technically, we design an iterative searching and updating
mechanism by optimizing a deep convolutional network, as
shown in Fig. 8, to generate a rotation map � ∈ R

na×na .
Briefly, taking the current DeepGI I as input, we adopt an
nl ×nl large kernel in the first convolutional layer with stride
nl to capture distribution patterns of local patch parameteri-
zations and produce an na ×na feature map, which is further
embedded in the subsequent convolutional layers to generate
a one-dimensional rotation map, whose values are within the
range of (0, 2π). At each iteration, we apply the learned �

to rotate the corresponding patch embeddings and assemble
an updated DeepGI. In our implementation, a differentiable
image rotation operator given by Riba et al. (2020) is adopted
to make the whole learning process trainable.

3.4.3 Fitting Strategy

We adopt total variation (TV), a widely used regularization
for image smoothing/denoising purposes, as optimization
objective, which can be formulated as

Ltv(I) = 1

M

m∑
x=1

m∑
y=1

(|∂x I(x, y)| + ∣∣∂yI(x, y)
∣∣) , (8)

where we approximate gradients for network updating using
differences between neighboring pixels, as implemented in

Fig. 8 Flowchart of the BCA module, where a rotation map is adap-
tively learned from the DeepGI to achieve boundary alignment through
iterative updating

(Riba et al., 2020). Considering that patch rotation does not
change relative pixel distributions inside local blocks, we can
mask out pixels that are not located at block edges, so that
we only conduct calculations on edge pixels, instead of the
entire image. Note that the BCAmodule is separately applied
on each DeepGI in an online manner.

4 Deep Feature Extraction on DeepGIs

DeepGI serves as a generic representation modality for point
clouds. Therefore, in addition to storage and transmission,
we are also interested in learning deep features directly from
DeepGIs for achieving downstream scenarios of point cloud
processing and understanding.

4.1 Standard 2D Convolution on DeepGIs

The most straightforward scheme can be transferring mature
deep convolutional neural architectures directly to consume
DeepGIs as inputs. Although standard 2D convolution is
known to be incompatible with irregular point set structure,
it is applicable to the proposed regular DeepGI structure for
the following reasons:

(1) Since pixel values of the created DeepGI are spatial coor-
dinates of the source point cloud, feature representations
extracted on 2D DeepGI describe the corresponding 3D
surface, which means that 2D convolution operation on
DeepGIs is analogous to convolution-like neighborhood
aggregation on 3D point sets.

(2) Locality is one of the most basic and essential inductive
biases of convolutional networks concealed in the learn-
ing paradigm of neighborhood information aggregation.
In terms of DeepGI, pixels (i.e., points) within the local
block come from the same local surface and are geometri-
cally “unfolded” onto regular grids. Therefore, applying
the standard spatial convolution on DeepGI is equivalent
to an operation on the local surfaces of the 3D point set.
Moreover, spatial proximity alsomaintains across blocks,
since adjacent blocks come from neighboring patches.
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Fig. 9 Flowchart of ourDeepGI-driven large-scale point feature extrac-
tion framework.We sequentially stack IBMandCBM layers, and obtain
a global shape descriptor by GAP. Dense point-wise features can be
generated by top-down feature propagation

(3) Hierarchical feature extraction becomes natural. Differ-
ent from previous point-based networks (Qi et al., 2017b;
Wu et al., 2019) that apply FPS to construct different
levels of sparser point clouds, we can achieve this by
common image pooling operators (e.g., max-pooling,
average-pooling).

(4) There is no need to explicitly conduct spatial matching
for multi-scale feature fusion and propagation, since we
can conveniently align feature maps with different sizes
via appropriate downscaling or interpolation operations.

Empirically, we design different variants of convolutional
architectures operating on DeepGIs to validate its compati-
bility with generic image analysis tools (see Sect. 5.2.2).

4.2 Customized Feature Extractor on DeepGI

Despite the potential of applying standard 2D convolution
to DeepGI, we also notice the following unfavorable factors
that may limit its learning capability:

(1) Spatial convolution is sensitive to different parameteriza-
tion patterns. Since we cannot ensure that similar object
surfaces correspond to consistent parameterizations, the
search space of such a learning paradigm can be greatly
enlarged, which may hurt network robustness.

(2) Sincewe typically adopt redundant grid resampling in the
LPE module to enhance representation accuracy, there
exist an arbitrary number of repetitive pixels in local
blocks of DeepGI, which may disturb local aggregation.

(3) Spatial discontinuity between block edges cannot be
eliminated, despite being smoothed by the BCAmodule.
This may produce unstable outputs when convolutional
kernels sliding across boundary pixels.

Therefore, here we propose a highly customized learn-
ing architecture for the proposed DeepGI representation
modality. As illustrated in Fig. 9, we present a two-stage fea-
ture extraction workflow consisting of intra-block modeling
(IBM) and cross-block modeling (CBM).

Generally, in the first IBM stage, each local block I(i)L is
embedded into a one-dimensional feature vector v(i) ∈ R

dv

that encodes local geometry information around the corre-
sponding patch centroid. This produces an na × na feature
map denoted as V ∈ R

na×na×dv . In the second CBM stage,
we present a hierarchical graph convolution framework,
where patch descriptors {v(i)}Na

i=1 are interacted and fused
into high-level feature abstractions. Inwhat follows,wedetail
these two stages.

4.2.1 Inner-Block Modeling (IBM)

To facilitate the mathematical formulation, we denote the
input tensor of the i th IBM unit as Ti ∈ R

mi×mi×di , where
T1 is the given DeepGI I ∈ R

m×m×3 at the first IBM
unit. Then, the output feature map is denoted as Ti+1 ∈
R
mi+1×mi+1×di+1 , where mi = mi+1 × ξ and ξ represents

feature down-scaling ratio. Formally, we can describe the
learning process of a single IBM unit as

Ti+1 = MPξ

(
Conv1×1

([Ti ;Ti − N Iξ (APξ (Ti ))]
))

, (9)

where APξ (·) and MPξ (·) represent average-pooling and
max-pooling operators with both kernel size and stride set
as ξ , N Iξ (·) represents nearest interpolation operator with
scale factor set as ξ , and Conv1×1(·) represents 1 × 1 con-
volution.

In our design, we slide an average-pooling kernel to pro-
duce “mean feature centroids”, which are further subtracted
from the input features to form “relative features”. This step
aims to achieve neighborhood association. We concatenate
the original input features with the obtained relative features
and use a 1×1 convolutional layer followed by max-pooling
for feature fusion and resolution reduction.

In our experiments, we specify hyperparameter ξ in accor-
dance with block size nl to deduce an na ×na feature mapV.
We uniformly use two IBM units for modeling inner-block
statistics by accordingly configuring ξ as

√
nl .

4.2.2 Cross-Block Modeling (CBM)

The preceding IBM stage separately produces vectorized
encodings for each of the Na blocks. In the CBM stage, we
introduce EdgeConv, a popular graph convolution operator
(Wang et al., 2019), for dynamic interactions and relation-
shipmodeling across blocks under global shape context. This
can be adapted without any technical modification. Still, dif-
ferent from the original processing pipeline, we additionally
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add a 2× max-pooling operation after each graph convolu-
tion layer, which achieves neighborhood aggregation in the
spatial domain and significantly reduces computational com-
plexity andmemory footprint in deeper EdgeConv layers. By
stacking several CBM units, we obtain a high-level feature
map denoted as F ∈ R

n f ×n f ×d f .
Thus, we construct a set of concise and efficient learning

operators for large-scale point cloud learning, which neatly
overcome the aforementioned limitations brought by 2Dcon-
volution, concretely:

(1) In the IBM stage, we only adopt 1 × 1 convolutions
for feature embedding, which is insensitive to different
parameterization patterns.

(2) When applyingmax-pooling for local aggregation, repet-
itive pixels are naturally ignored.

(3) Since we split the overall learning process into intra- and
inter-block phases, we avoid aggregating statistics across
block boundaries.

4.2.3 Task Networks

Following common practices in designing deep image classi-
fiers, we apply global average pooling (GAP) to extract from
F a vectorized global shape signature f ∈ R

d f . By feeding
it into the subsequent fully-connected layers, we can build
a complete shape classification network. In our implementa-
tion, we apply GAP to intermediate feature maps and then
concatenate multi-level signature vectors to form a global
descriptor of the input model.

To produce dense features and achieve fine-grained tasks
that require point-wise prediction/labeling, we consider
multi-scale feature propagation for progressively integrating
high-level features into low-level features. We conveniently
resort to classic image segmentation frameworks (Ron-
neberger et al., 2015) to deploy deconvolutional layers and
conduct top-down feature propagation for deducing a full-
resolution feature map Y ∈ R

m×m×dy . Specifically, the
higher-level feature map is upscaled and fed into a 1 × 1
convolutional layer to align both the resolution and number
of channels with the lower-level featuremap, which are fused
by element-wise addition for further propagation. Finally, to
remove redundant features inY that encode repetitive pixels,
we map them back to input point cloud P based on nearest
neighbor assignment and generate point-wise feature embed-
dings Ŷ ∈ R

N×dy .

5 Experiments

We start by introducing our specific development protocols
including benchmark datasets and implementation details in
Sect. 5.1. In the following four subsections, we report perfor-

mance on downstream large-scale 3D point cloud processing
and understanding tasks: (1) shape classification (Sect. 5.2);
(2) object and scene segmentation (Sect. 5.3); (3) normal esti-
mation (Sect. 5.4); and (4) geometry compression (Sect. 5.5),
which demonstrate the potential and superiority of our learn-
ing frameworks driven by DeepGI representation modality.
Finally, we also validate the advantage of our frameworks for
handling sparse point clouds in Sect. 5.6.

5.1 Development Protocols

Following common development protocols for benchmark-
ing 3D point cloud learning frameworks, we conducted
shape classification on both the ModelNet40 (Wu et al.,
2015) and ScanObjectNN (Uy et al., 2019) datasets, object
part segmentation on the ShapeNet-Part (Yi et al., 2016)
dataset, indoor scene segmentation on the S3DIS (Armeni
et al., 2016) dataset, and normal estimation on the Model-
Net40 (Wu et al., 2015) dataset. For comparison with mesh
parameterization-based learning schemes, we also included
an additional human body segmentation task using the same
dataset as collected in Maron et al. (2017), which we name
the “M-HBS” dataset for convenience. Finally, we collected
testing models from the MIT-Animation (Vlasic et al., 2008)
dataset to validate the potential ofDeepGI in large-scale point
cloud geometry compression.

In the following, we provide the details of the above
four benchmark datasets and our specific data preparation
procedures in Sect. 5.1.1. After that, we introduce more
implementation details in terms of building RegGeoNet and
the subsequent deep feature extractors for achieving different
downstream evaluation tasks in Sect. 5.1.2.

5.1.1 Benchmark Datasets

ModelNet40Wuet al. (2015) is a large-scale object dataset of
3D CADmodels, which totally provides 12311meshmodels
covering 40man-made categories. Under the official split, we
have 9843 training models and 2468 testing models.

We adopted Poisson Disk Sampling (PDS) to uniformly
discretize all mesh models into dense point clouds, each of
which is composed of 100K spatial points. In the meantime,
we can obtain point-wise normals, which are then normalized
into unit vectors.
ScanObjectNN Uyet al. (2019) is amore recent and challeng-
ing real-world object dataset collected from scanned indoor
scene data covering 15 categories, which only provides
sparse point cloud models composed of 2048 uniform points
each. Although our framework is customized for large-scale
point clouds, it is still valuable to explore its effectiveness
when dealing with real-scanned object data. Following com-
mon development protocols, we conducted experiments on
its OBJ_ONLY (w/o background) and OBJ_BG (w back-
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ground) settings, in which we have 2309 models for training
and 581 for testing.
ShapeNet-Part Yi et al. (2016) is an annotated object dataset
providing per-point semantic labels for 50 part categories
from 16 object categories, including totally 16881 3D CAD
models collected from the ShapeNet-Core (Chang et al.,
2015) repository. Following common practices, we have
14007 shapes for training and the rest 2874 for testing.

We correspondingly collected the original mesh models
from the ShapeNet-Core repository, and then mapped sparse
per-point labels provided by Yi et al. (2016) to mesh faces.
This allowsus to discretize 100Kpointswith part annotations
from labeled meshes using PDS.
M-HBS Maron et al. (2017) is a 3D surface segmenta-
tion dataset containing 370 training meshes and 18 testing
meshes, whose faces are annotated according to 8 seman-
tic partitions of human body. All meshes in this dataset are
sphere-like models, since the corresponding approaches can-
not deal with complex topologies.

Similar to the preceding processing procedures, we used
PDS to resample 100 K densely-labeled points from each of
the labeled meshes. To facilitate benchmarking other point-
based learning approaches, we passed semantic labels from
faces to vertices and thus constructed a sparse vertex set
with part annotations, where the number of vertices ranges
approximately from 6 to 12 K.
S3DIS Armeni et al. (2016) is a widely-used indoor scene
dataset for semantic segmentation of large-scale colored
point clouds, consisting of 271 medium-sized single rooms
belonging to 6 areas. Following common development pro-
tocols as employed in Fan et al. (2021); Hu et al. (2020); Qiu
et al. (2021), in our experiments, we sub-sampled raw point
clouds and then cropped them into overlapping sub-regions
each containing 65536 uniform points.
MIT-AnimationVlasic et al. (2008) provides high-quality 3D
mesh models reconstructed from multi-view video record-
ings of diverse humanmotions.We selected a series of testing
models and resampled 800 K points from each of the given
meshes using PDS to conduct experiments on geometry com-
pression of large-scale point clouds.

5.1.2 Implementation Details

The overall workflow of our regular geometry driven large-
scale point cloud learning framework consists of two inde-
pendent processing stages: (1) data modality transformation
through RegGeoNet; (2) task-specific deep feature extrac-
tion.

For the three key modules of RegGeoNet, we collected
a large amount of local patches for training the LPE mod-
ule, and also designed appropriate initialization strategies
for the GAE and BCA modules, which represent an iterative
fitting process implemented by neural network optimization.

Specifically, we constructed a patch dataset by cropping sub-
regions from objectmodels of the large-scale ShapeNet-Core
dataset. When combined into the overall processing pipeline
of RegGeoNet, the trained LPE module is directly applied to
produce local patch parameterizations. For the GAEmodule,
instead of using randomly initialized network parameters, we
started by parameterizing NA points uniformly sampled from
a unit sphere for many iterations and used the resulting net-
work weights as initialization, with the purpose of avoiding
different parameterization results for the same input. For the
BCA module, its warm-up procedure is similarly performed
on a unit sphere, i.e., we applied the initialized GAE mod-
ule and the trained LPE module to generate a raw DeepGI,
which is fed into the BCA module for iterative refinement.
The warm-up process of the GAE/BCA module can be fin-
ishedwithin severalminutes, and the training time of the LPE
module is about two hours.
Configurations of DeepGI Generation Considering the spe-
cific task characteristics and the different number of input
points, we correspondingly specified appropriate configura-
tions for the generation of DeepGIs with balance of both
representation efficiency and computational cost.

For shape classification and normal estimation exper-
iments on ModelNet40, we set {NA = 1024, N ′

L =
200, NL = 256}. For object part segmentation experiments
on ShapeNet-Part and M-HBS, we set {NA = 1600, N ′

L =
64, NL = 81}. For the indoor scene segmentation experiment
on S3DIS, we set {NA = 1024, N ′

L = 100, NL = 144}.
For the ScanObjectNN dataset where input points clouds are
far from dense, we set {NA = 256, N ′

L = 16, NL = 25}.
For the point cloud geometry compression experiment, we
set {NA = 256, N ′

L = 3600, NL = 4096}. According to
specific data characteristics and task properties, we followed
some intuitive principles to configure the above hyperparam-
eters. For example, since segmentation is amore fine-grained
and localized geometry understanding task compared with
classification, we used larger NA and smaller NL in the part
segmentation experiment to enhance the semantic consis-
tency within each local patch. For geometry compression,
considering that in the refined DeepGI there still exists dis-
continuity across adjacent imageblocks,which has a negative
impact on compression efficiency, we changed to use smaller
NA and larger NL .

Figure 10 exhibits a gallery of typical 2D DeepGI repre-
sentations for diverse 3D object models from multiple shape
datasets involved in our experiments.

5.2 Shape Classification

Shape classification on ModelNet40 is one of the most
popular benchmarking scenarios for point cloud learning
architectures. In our implementation, we followed common
data augmentation practices, such as random translation,
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Fig. 10 Visualization of DeepGIs generated from a rich variety of
object categories

Table 2 Comparisons with point-based learning networks in terms
of overall accuracy (OA) on ModelNet40 with different input types
denoted as P (points) and N (normals)

Method Input OA (%)

PointNet (Qi et al., 2017a) P; 1 K 89.2

PointNet++ (Qi et al., 2017b) P + N; 5 K 91.9

SpecGCN (Wang et al., 2018) P + N; 2 K 92.1

PointWeb (Jiang et al., 2019) P + N; 1 K 92.3

PCNN (Atzmon et al., 2018) P; 1 K 92.3

SpiderCNN (Xu et al., 2018) P + N; 1 K 92.4

PointConv (Wu et al., 2019) P + N; 1 K 92.5

FPConv (Lin et al., 2020) P + N; 2 K 92.5

KPConv (Thomas et al., 2019) P; 7 K 92.9

DGCNN (Wang et al., 2019) P; 1 K 92.9

RS-CNN (Liu et al., 2019c) P; 1 K 92.9

InterpCNN (Mao et al., 2019) P; 1 K 93.0

ShellNet (Zhang et al., 2019) P; 1 K 93.1

Grid-GCN (Xu et al., 2020) P; 1 K 93.1

PCT (Guo et al., 2020) P; 1 K 93.2

PosPool (Liu et al., 2020) P; 5 K 93.2

DensePoint (Liu et al., 2019b) P; 1 K 93.2

SO-Net (Li et al., 2018a) P + N; 5 K 93.4

GDANet (Xu et al., 2021b) P; 1 K 93.4

PAConv (Xu et al., 2021a) P; 1 K 93.6

CurveNet (Xiang et al., 2021) P; 1 K 93.8

RegGeoNet-Cls DeepGI (P; 100 K) 95.2

The best result is highlighted in bold

gravity-axis rotation, coordinate jittering, and re-scaling
(isotropic, anisotropic), to enhance model generality and
robustness. Different from many previous frameworks (e.g.,
PointNet, PointNet++, RS-CNN, KPConv, DensePoint, and
PosPool), we did not include any voting techniques in the
testing phase to boost performance at the great cost of actual

inference efficiency. Besides, we also conducted experiments
on ScanObjectNN, which only provides sparse point clouds,
to validate our generalization ability in real-scanned object
data.

5.2.1 Comparisons with Point-Based Methods

We compared the proposed shape classification frame-
work calledRegGeoNet-Clswith state-of-the-art point-based
learning approaches, as summarized in Tables 2 and 3.

On the conventional ModelNet40 dataset, despite the
great efforts made by the point cloud community to explore
various complex and specialized modeling schemes, the cur-
rent state-of-the-arts are restricted to around 93% accuracy.
Comparatively, our learning framework achieves significant
performance gains and reaches 95.2% overall accuracy. On
themore challengingScanObjectNNdataset, ourmethod still
achieves highly competitive performance, comparedwith the
current state-of-the-art methods.

5.2.2 Comparisons with Parameterization-Based Methods

We further compared our learning framework with other
closely-related surface-stylemodeling schemes, i.e.,GWCNN
(Ezuz et al., 2017), DLGI (Sinha et al., 2016), and SNGC
(Haim et al., 2019), which use input types of global parame-
terizations computed from repaired sphere-type (genus-zero)
manifold meshes. As for the subsequent deep feature extrac-
tors, GWCNN (Ezuz et al., 2017) and DLGI (Sinha et al.,
2016) deploy a specialized CNN classifier, while SNGC
(Haim et al., 2019) adopts the off-the-shelf Inception-V3
(Szegedy et al., 2016) architecture with modifications. In
the preceding Sect. 4.1, we have intuitively analyzed the
viability of applying 2D convolutions to DeepGIs for deep
feature extraction. Here, we investigated several simple con-
volutional baselines to empirically verify our observations.
Design of convolutional baselines Specifically, we con-
structed “CB_3X3” consisting of 6 layers of 3 × 3 convo-
lutions, each with 2× max-pooling. We set feature chan-
nels as {16, 32, 64, 64, 128, 1024}. This baseline was also
applied to raw DeepGIs without the BCA refinement, from
which we can observe negative influences of boundary dis-
continuity across local blocks. Then, we modified it into
“CB_16X16_3X3” by replacing the first four 3 × 3 lay-
ers with a single convolution with kernel size 16 × 16 and
stride 16. Thus, we avoided filtering across block edges, and
aggregated the whole block statistics via a single spatial
convolution. Besides, we created an even simpler baseline
“CB_1X1_3X3” by applying two 1× 1 convolutional layers
followed by 16× max-pooling for block modeling.

As reported in Table 4, after boundary alignment by the
BCA module, the “CB_3X3” baseline gains 0.8% accuracy
improvement and obviously outperforms GWCNN (Ezuz
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Table 3 Comparisons of
point-based networks on
OBJ_ONLY and OBJ_BG
settings of ScanObjectNN under
the measurement of overall
accuracy (%)

Method Input OBJ_ONLY OBJ_BG

PointNet (Qi et al., 2017a) P; 1 K 79.2 73.3

SpiderCNN (Xu et al., 2018) P; 1 K 79.5 77.1

PointNet++ (Qi et al., 2017b) P; 1 K 84.3 82.3

PointCNN (Li et al., 2018b) P; 1 K 85.5 86.1

DGCNN (Wang et al., 2019) P; 1 K 86.2 82.8

GDANet (Xu et al., 2021b) P; 1 K 88.0 87.2

RegGeoNet-Cls DeepGI (P; 2 K) 88.3 86.9

The best results are highlighted in bold

et al., 2017) and DLGI (Sinha et al., 2016), which reveals
the necessity of enhancing global consistency. However, it
still under-performs SNGC (Haim et al., 2019) designed
to create more consistent surface-to-plane representations.
“CB_16X16_3X3” reaches higher accuracy of 91.9%, ben-
efiting from richer augmentation and separate inner-block
aggregation. “CB_1X1_3X3” shows another 0.5% improve-
ment by switching to point-wise inner-block embedding,
which is insensitive to different parameterization patterns
within blocks.

5.3 Object and Scene Segmentation

Weevaluated the proposed learning framework (RegGeoNet-
Seg) for point-wise semantic labeling to reveal its potential
in fine-grained visual tasks. Following common practices for
benchmarking point-based networks, we experimented with
generic object part segmentation on ShapeNet-Part. Previous
works adopted 2048 points uniformly sampled frommeshes,
some of which, e.g., PointNet++, SO-Net (Li et al., 2018a),
and SpiderCNN (Xu et al., 2018), further exploited nor-
mals to enrich input information and boost performance. We
adopted classic class-average and instance-average mean
intersection-over-union (cmIoU and imIoU) as quantitative
metrics. During testing, we mapped dense labels to the same
2048 points as consumed by competing methods for unified
measurement. As listed in Table 5, our learning framework

Table 4 Comparisons with surface-style learning approaches in terms
of overall accuracy (OA) onModelNet40 with global parameterizations
(G.S.) computed from meshes as network inputs

Method Input OA (%)

GWCNN (Ezuz et al., 2017) Mesh G.S. 74.6

DLGI (Sinha et al., 2016) Mesh G.S. 83.9

SNGC (Haim et al., 2019) Mesh G.S. 91.6

CB_3X3 DeepGI (w/o BCA) 89.0

CB_3X3 DeepGI 89.8

CB_16X16_3X3 DeepGI 91.9

CB_1X1_3X3 DeepGI 92.4

Fig. 11 Visualizations of object part segmentation. Row 1: sparse
ground truths; Row 2: our dense predictions

achieves obvious performance gains with highly competitive
segmentation accuracy on all 16 object categories. Figure 11
also visualizes some typical segmentation results.

In addition, we experimented with human body segmen-
tation on M-HBS for non-rigid shape analysis. Following
(Haim et al., 2019; Maron et al., 2017), we measured seg-
mentation accuracy as the ratio of correctly labeled faces
weighted by triangle areas. During testing, we correspond-
ingly mapped point-wise labels to mesh faces to unify
measurement. As shown in Table 6, Toric-CNN (Maron et
al., 2017) and SNGC (Haim et al., 2019) directly work on
repairedmeshes. Besides, we included three point-based net-
works (Qi et al., 2017a, b; Wang et al., 2019), in which
sparse vertices of meshes were treated as inputs. Again, our
method achieves higher accuracy against both point-based
andparameterization-basedmethodswith largemargins. Fig-
ure 12 visualizes some typical segmentation results.

For indoor scene segmentation on S3DIS, existing meth-
ods (Fan et al., 2021;Hu et al., 2020;Qiu et al., 2021) perform
both training and inference on cropped sub-regions, each of
which contains 40960 points. We adopted commonly-used
mean class accuracy (mAcc) and mean intersection-over-
union (mIoU) as quantitative metrics. As reported in Table 7,
our method still shows satisfactory performance, compared
with the current state-of-the-art frameworks that are partic-
ularly specialized for the specific task of large-scale point
cloud segmentation, while our feature extraction pipeline is
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Table 6 Comparisons of human
body segmentation
performances on M-HBS with
different input types denoted as
M.F. (multiple features), Mesh
G.S. (mesh-based global
parameterizations), S.V. (sparse
vertices), and P (points).

Method Type and input size Ratio (%)

Toric-CNN (Maron et al., 2017) M.F. 88.0

SNGC (Haim et al., 2019) Mesh G.S. 91.3

PointNet (Qi et al., 2017a) S.V.; 6K ∼ 12K 87.7

DGCNN (Wang et al., 2019) S.V.; 6K ∼ 12K 89.7

PointNet++ (Qi et al., 2017b) S.V.; 6K ∼ 12K 90.8

RegGeoNet-Seg DeepGI (P; 100K) 93.2

The best results are highlighted in bold

Table 7 Comparisons of
different models on Area-5 of
S3DIS (Armeni et al., 2016) for
semantic segmentation of
large-scale indoor point cloud
scenes

Method mAcc (%) mIoU (%)

SPG (Landrieu and Simonovsky, 2018) 66.5 58.0

KPConv-deform (Thomas et al., 2019) 72.8 67.1

FPConv (Lin et al., 2020) 68.9 62.8

RandLA-Net (Hu et al., 2020) 71.5 62.5

SCF-Net (Fan et al., 2021) − 63.4

BAAF-Net (Qiu et al., 2021) 73.1 65.4

Fast-PT (Park et al., 2022) 76.5 68.5

RegGeoNet-Seg 72.3 63.7

The best results are highlighted in bold

Fig. 12 Visualizations of human body segmentation. For each pair, the
left shows ground truth labels of sparse vertices, and the right shows
our dense predictions

built upon common techniques and applied for rich types of
data and tasks.

5.4 Normal Estimation

In addition to high-level visual recognition scenarios, we
also explored a low-level geometry processing task, i.e.,
normal estimation on ModelNet40, which focuses on struc-
tural statistics of the underlying manifold surface, instead of
abstract semantic cues.

Following common practices, we measure difference
between regressed normals and ground truths by average
cosine distance. During testing, we similarly mapped dense
normals to the same 1024 points as consumed by competing
methods for unified measurement. As reported in Table 8,
compared with the best-performing competitor (i.e., PCT
Guo et al., 2020), our method still achieved 38.5% perfor-
mance gain. Since normal estimation heavily relies on local

Fig. 13 Visualizations of normal estimation. We color-code points
according to angle difference between predicted and ground truth nor-
mals

Table 8 Comparisons of normal regression errors measured by average
cosine distance on ModelNet40

Method Input Error

PointNet (Qi et al., 2017a) P; 1 K 0.47

PointNet++ (Qi et al., 2017b) P; 1 K 0.29

PCNN (Atzmon et al., 2018) P; 1 K 0.19

RS-CNN (Liu et al., 2019c) P; 1 K 0.15

PCT (Guo et al., 2020) P; 1 K 0.13

CurveNet (Xiang et al., 2021) P; 1 K 0.11

RegGeoNet-Reg DeepGI (P; 100 K) 0.08

The best result is highlighted in bold

geometrymodeling,DeepGI is naturally suited to learn struc-
tural statistics from pixels (i.e., points) “unfolded/flattened”
from the underlying surface. Some typical examples are pro-
vided in Fig. 13.
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5.5 Geometry Compression

As the increasing advancement of data acquisition for high-
quality point clouds, there is an urgent need to compress
such enormous volume of geometric data, considering the
limited storage capacity and network bandwidth. However,
different frommature and well-developed image/video com-
pression, point cloud compression is still at its infant stage
and faces great challenges in straightforwardly adapting
existing image/video compression techniques due to the
irregular structure of 3D point cloud data. Thus, 3D point
cloud data compression is drawing much attention from both
academia and industrial (Liu et al., 2019; Schwarz et al.,
2018).

Fortunately, when converting unstructured point clouds
into regular representation structures of DeepGI, we are able
to naturally introduce standard codecs of 2D image/video
compression to achieve 3D compressionwithout efforts. This
directs a highly promising research paradigm in exploit-
ing existing mature techniques for solving new problems.
Accordingly, we experimented with large-scale point cloud
geometry compression by integrating DeepGIs into 2D com-
pression pipelines.

In our implementation, we fed DeepGIs into the standard
High Efficiency Video Coding (HEVC, Sullivan et al., 2012)
codec for intra-frame prediction. Higher performance could
be expected by adoptingmore advanced image/video codecs,
e.g.,VVC(Bross et al., 2021).Wecompared our compression
pipeline with the latest reference software of Geometry-
based Point Cloud Compression (G-PCC, Schwarz et al.,
2018), the current state-of-the-art static point cloud compres-
sion codec standardized by Moving Picture Experts Group
(MPEG). We visualized the testing models as well as the
corresponding DeepGI representations in Fig. 14. Figure 15
provides the comparison of the rate-distortion of different
methods, where it can be seen that our method consistently
outperforms G-PCC. More specifically, at the same com-
pression distortion, our method saves more than 60% bits
compared with G-PCC. Moreover, We also observe perfor-
mance degradation when removing the BCA module from
the complete RegGeoNet architecture, demonstrating the
necessity and effectiveness of the BCAmodule in enhancing
spatial consistency.

5.6 Additional Verification

Although the proposed framework is customized for large-
scale point cloud data, we still would like to verify its
applicability under traditional experiment settings working
with sparse point cloud data.

We conducted shape classification and normal estimation
on ModelNet40 with 1 K points, and object segmentation
on ShapeNet-Part with 2 K points. For simplicity, we did

Fig. 14 Typical testing models and the corresponding DeepGIs gener-
ated without (Row 2) and with (Row 3) the BCA module

not introduce new processing techniques, and only config-
ured the GAE module to generate DeepGIs with resolutions
of 32 × 32 and 48 × 48. For deep feature extraction, we
deployed a single IBM unit without max-pooling and pre-
served the subsequent learning process of CBM. As reported
inTable 9, despite such naïve adaptations, our framework still
achieves highly-competitive performance compared with
traditional learning architectures for sparse point cloud pro-
cessing (Please refer to Tables 2, 5, and 8 for comparison).

Reversely, we explored the possibility of transferring tra-
ditional deep set architectures to large-scale point cloud
processing, where input models contain the same 100K
points. We selected PointNet that is known to be highly-
efficient without expensive feature aggregation mechanisms
for verification, since the other common point-based net-
works turn to be completely impractical to consume such
large-scale point clouds in terms of both time and memory
costs. Different from our previous training environment of a
single RTX 2080 Ti GPU with 11GB memory, we deployed
4 RTX 3090GPU eachwith 24GBmemory to train PointNet
ondense point clouds,withoutwhich the network cannot con-
verge under a small batch size. As listed in Table 10, although
PointNet benefits from the increasing number of input points,
its modeling capacity still turns to be insufficient, deducing
relatively limited performance gains.
Effects of Warming Up the GAE and BCA Modules As men-
tioned in Sect. 5.1.2, we designed warm-up procedures for
theGAEmodule and theBCAmodule. In practice, compared
with random initialization, it is observed that such warm-up
procedures can speed up convergence of the fitting process
to some extent, which may bring some benefits to the rep-
resentation quality of the generated DeepGIs under limited
budget of iterations. When removing these warm-up proce-
dures during the creation of DeepGIs, the subsequent task
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(a) (b) (c) (d)

Fig. 15 Rate-distortion performance comparisons of different point cloud compression methods

performance onModelNet40 classification slightly decreases
from the original 95.22% to 95.10%. This also implies the
potential value of investigating better initialization schemes
for the fitting process of the GAE and BCA modules.
Computational Efficiency In Table 11, we listed time and
memory costs of the three core modules involved in our
RegGeoNet workflow separately. Compared with the exist-
ing deep prior counterparts (Chu et al., 2021; Gadelha et al.,
2019; Hanocka et al., 2020) that usually need several hours
for processing a single input, our processing pipeline shows
satisfactory computational efficiency, which can be finished
within seconds. In addition to the efficiency statistics of
RegGeoNet, we further calculated the computational effi-
ciency of the subsequent feature extractor on ModelNet40
classification, denoted as DeepGI-CFE-Cls, and made com-
parisons with representative state-of-the-art learning models
in Table 12. Compared with existing methods designed to
deal with sparse inputs, the proposed DeepGI-driven fea-
ture extractor shows superior time efficiency and satisfactory
memory cost for processing dense points.
Representation Trade-off There are several key hyperparam-
eters, i.e., {NA, N ′

L , NL}, in RegGeoNet for controlling the
structure and resolution of DeepGIs, where it is required
that NA × N ′

L ≥ N for redundant query of patch points
and NL ≥ N ′

L for redundant grid resampling. Intuitively,
such two principles aim to pursue representation accuracy
(i.e., coverage of points) at the cost of representation redun-
dancy (i.e., repetition of pixels). To statistically illustrate
such trade-off relationships, we conducted detailed veri-
fication experiments on five representative categories of
ModelNet40, i.e., airplane, car, chair, person, and table,
by generating DeepGIs under different configurations, as
shown in Table 13. In general, we can observe that creat-
ing higher-resolution DeepGIs with larger redundancy can
significantly improve the representation accuracy (Coverage
andCD). FromRow1 toRow5, the value of NA×N ′

L is basi-
cally the same as the value of N , and thus the representation
accuracy is limited by inadequate patch points collection, no
matter how large NL is. From Row 6 to Row 9, N ′

L becomes
larger, leading to satisfactory representation accuracy when
NL = 256. Besides, it is not surprised that further increasing

Table 9 Performance of our framework in shape classification, object
segmentation, and normal estimation, when consuming sparse point
cloud data with 1 K points each

Shape classification Object segmentation Normal estimation

OA: 93.4% imIoU: 86.1% Error: 0.12

Table 10 Performance of PointNet when transferred to consume large-
scale models containing 100 K points

Shape classification Object segmentation Normal estimation

OA: 90.1% imIoU: 84.3% Error: 0.35

Table 11 Time efficiency and GPU memory cost of the three core
modules in the whole RegGeoNet workflow for converting a single
large-scale point cloudwith 100K points into its DeepGI representation

Modules Time cost (s) GPU memory (GB)

GAE 4.45 0.48

LPE 0.16 1.25

BCA 2.17 0.44

the resolution of grid resampling (e.g., NL = 324) becomes
less economical. From Row 10 to Row 13, the representation
accuracy has become sufficiently high.

6 Open Issues

This work explores a novel idea of learning regular geom-
etry representations for large-scale 3D point clouds, which
brings some interesting insights and opens new possibilities.
More importantly, our method strongly reveals the value and
potential of exploiting large-scale point cloud data, which
has been ignored in previous works that only focus on sparse
models. Taking a closer look at the proposed deep feature
extraction pipeline (Sect. 4.2), DeepGI enables learning from
dense point clouds efficiently, and the regularity of its repre-
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Table 12 Time efficiency, GPU
memory, and overall accuracy
(OA) of different methods
during inference for
ModelNet40 classification. For
fair comparison, all evaluations
are performed on a single RTX
2080Ti GPU with the same
input data

Method Input Time (s) Memory (GB) OA (%)

DGCNN (Wang et al., 2019) P; 1 K 0.20 3.35 92.9

GDANet (Xu et al., 2021b) P; 1 K 0.10 2.76 93.4

PAConv (Xu et al., 2021a) P; 1 K 0.08 1.12 93.6

CurveNet (Xiang et al., 2021) P; 1 K 0.18 0.49 93.8

DeepGI-CFE-Cls DeepGI (P; 100 K) 0.05 2.90 95.2

We record the time and memory cost in a forward pass (with batch size as 24) averaged over multiple
independent trials

Table 13 Trade-off between
representation redundancy and
accuracy (coverage) of DeepGI
representations generated under
different configurations, where
Redundancy is defined as the
ratio between the number of
pixels in the generated DeepGIs
and the number of the input
points (i.e., 100 K), Coverage
indicates what proportion of the
input points are captured in the
generated DeepGIs, CD
represents the Chamfer Distance
between input points and
parameterized points in the
generated DeepGIs after
removing repetitive pixels

N NA N ′
L NL DeepGI Resolution Redundancy Coverage (%) CD (10−6)

100 K 1024 100 100 320 × 320 1.02× 72.78 9.19

100 K 1024 100 144 384 × 384 1.48× 82.76 7.03

100 K 1024 100 196 448 × 448 2.01× 85.32 6.44

100 K 1024 100 256 512 × 512 2.62× 85.79 6.33

100 K 1024 100 324 576 × 576 3.32× 85.87 6.31

100 K 1024 144 144 384 × 384 1.48× 85.33 3.44

100 K 1024 144 196 448 × 448 2.01× 93.11 1.82

100 K 1024 144 256 512 × 512 2.62× 95.86 1.26

100 K 1024 144 324 576 × 576 3.32× 96.59 1.10

100 K 1024 196 196 448 × 448 2.01× 92.38 1.57

100 K 1024 196 256 512 × 512 2.62× 97.06 0.61

100 K 1024 196 324 576 × 576 3.32× 99.04 0.23

100 K 1024 196 361 608 × 608 3.70× 99.70 0.15

sentation structure allows for simple but powerful modeling
schemes (e.g., IBM, CBM) to be used.

Besides, based on our experience in exploring this project,
we also list some interesting and promising directions for
extensions and improvement of the current learning frame-
work.

(1) Cross-Block Discontinuity The current hierarchical pro-
cessing pipeline cannot be strictly considered as a global
parameterization for shape geometry. Despite the exis-
tence of the proposed BCA module for topological
repairment after global-to-local parameterization, it is
still far from satisfactory in terms of maintaining global
spatial continuity (i.e., the blocking effect cannot be
eliminated). This brings negative influence to the sub-
sequent learning and processing pipelines, as verified in
our experiments on convolution-style feature extraction
(Sect. 5.2) and compression codec (Sect. 5.5).

(2) Intra-Category Inconsistency We are not able to ensure
producing consistent parameterization across objects
sharing similar geometry and topology due to the uncon-
trollable randomness of the fitting process. Some typical
examples are given in Fig. 16. Ideally, we expect to obtain
consistent image patterns on the 2D embedding domain.

For example, object parts that have the same semantics
can be captured in the same image areas.

(3) Representation Robustness The processing pipeline of
RegGeoNet is designed to satisfy permutation-invariance.
Technically, translation and scaling consistency can also
be achieved without effort by normalizing input models
into a unit sphere in advance. Besides, a more stringent
requirement is that the generatedDeepGIs should achieve
invariance to rotation. Unfortunately, as illustrated in
Fig. 17, since RegGeoNet is applied to a single input
under separate optimization, it is sensitive to rotation.
Deeper explorations of effective geometry- and topology-
aware learning processes and constraints are needed to
particularly solve this issue. It it also worth noting that,
in the current deep learning-based point cloud processing
research community, rotation-invariance still remains a
rather challenging problem (Chen et al., 2019; Rao et al.,
2019).

(4) Extensions There are some promising explorations that
can be made to improve our method in the future works.
We can investigate a global parameterization learning
framework in its real sense, which is computation-
ally efficient for consuming large-scale point clouds.
It is also interesting to introduce differential geometry
analysis tools to constrain regular embedding of dis-
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Fig. 16 Illustration of intra-category inconsistency, where we are given
three models of the same airplane category. However, RegGeoNet fails
tomapobject partswith the same semantics into the samepixel locations

Fig. 17 Illustration of transformation sensitivity. Given the same chair
model under different rigid transformations, the generated DeepGIs
show different parameterization patterns

cretized surface points. Practically, it is possible to jointly
solve correspondence and parameterization problems to
achieve consistency across shapes and motions. In terms
of application scenarios, we can expect that DeepGI
can be naturally extended to a wide range of image-
related tasks. For example, point cloud downsampling
and upsampling can be achieved by image pooling and
super-resolution techniques. We can also develop fully
end-to-end deep compression framework for point cloud
geometry based on DeepGI representations.

7 Conclusion

We explored a generic deep learning-based framework, i.e.,
RegGeoNet, for large-scale point cloud processing. The core
concept is to convert an irregular 3D point cloud into a com-
pletely regular 2D image representation called DeepGI. We
further tailored an efficient feature extraction pipeline that
directly operates on the DeepGI modality. In experiments,
our framework shows state-of-the-art performance in diverse
point cloud understanding tasks.

In general, our work reveals the necessity and potential
of exploiting dense point clouds for visual reasoning, since
sparse models cannot always provide sufficient geometry
information. Besides, as DeepGI is a generic representation
modality for point clouds, it would be promising to see more
extensions in many other interesting application scenarios.
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